LECTURE 7

Functions

1. Functions as Special Cases of Relations

Definition 7.1. Let A and B be sets. A function between A and B is a non-empty relation $f \subseteq A \times B$ such that

$$(a,b) \in f \text{ and } (a,b') \in f \implies b = b'$$

The **domain** of f is the set of all first elements of f:

$$domain(f) = \{a \in A \mid (a,b) \in f\}$$

and the range of f is the set of all second elements of f:

$$range(f) = \{b \in B \mid (a, b) \in f\}$$

If it happens that the domain of f is the entire set A we say that f is a function from A to B, and write

$$f:A\to B$$

Definition 7.2. A function $f: A \to B$ is called surjective if B = range(f).

Definition 7.3. A function $f: A \to B$ is called **injective** (or **one-to-one**) if, for all $\forall a, a' \in A$

$$f(a) = f(a') \implies a = a'$$

NOTATION 7.4. Suppose that f is a function from A to B. If C is a subset of A, we denote by f(C) the subset

$$f(C) = \{ b \in B \mid b = f(c) \text{ for some } c \in C \}$$

The set f(C) is called the image of C in B by f. If D is a subset of B, the set

$$f^{-1}(A) \equiv \{a \in A \mid f(a) \in D\}$$

is called the **pre-image** of D in A by f.

THEOREM 7.5. Suppose that $f: A \to B$. Let C, C_1 , and C_2 be subsets of A, and let D, D_1 and D_2 be subsets of B; then

- 1. $C \subseteq f^{-1}(f(C))$ 2. $f(f^{-1}(D)) \subseteq D$
- 3. $f(C_1 \cap C_2) \subseteq f(C_1) \cap f(C_2)$
- 5. $f(C_1 \cap C_2) \subseteq f(C_1) \cap f(C_2)$ 4. $f(C_1 \cup C_2) = f(C_1) \cup f(C_2)$ 5. $f^{-1}(D_1 \cap D_2) = f^{-1}(D_1) \cap f^{-1}(D_2)$ 6. $f^{-1}(D_1 \cup D_2) = f^{-1}(D_1) \cup f^{-1}(D_2)$ 7. $f^{-1}(B \setminus D) = A \setminus f^{-1}(D)$

Proof:

1. Let c be an arbitary element of C, then f(c) is an element of f(C) since $c \in C$. But then c is an element of $f^{-1}(f(C))$, because this set consists of all points in C that land on some element $d \in f(C)$. So every element of C is an element of $f^{-1}(f(C))$; i.e., $C \subseteq f^{-1}(f(C))$

- 2. Let d be an arbitrary element of D. Then d lies in either $D \cap f(A)$ or $f^{-1}(\{d\}) = \{\}$. In the first case, we obviously have $d \in f(f^{-1}(\{d\})) = \{d\} \subset D$. In second case, we have $f(f^{-1}(\{d\})) = \{f(\{d\}) \in D\}$. So in either case $f(f^{-1}\{d\}) \subset D$. Hence, $f(f^{-1}(D)) \subseteq D$.
- 3. Homework.
- 4. Homework.
- 5. Homework.
- 6. Homework.
- 7. Homework.

Theorem 7.6. Suppose f is a function from A to B. Let $Let\ C, C_1$, and C_2 be subsets of A, and let D be a subset of B; then

- 1. If f is injective, then $f^{-1}(f(C)) = C$.
- 2. If f is surjective, then $f(f^{-1}(D)) = D$.
- 3. If f is injective, then $f(C_1 \cap C_2) = f(C_1) \cap f(C_2)$.

Proof:

- 1. Homework.
- 2. Homework.
- 3. From the preceding Theorem we know for any map $f:A\to B$, and any subsets C_1,C_2 of A, we have

$$f\left(C_{1}\cap C_{2}\right)\subseteq f\left(C_{1}\right)\cap f\left(C_{2}\right)$$

we need to show that

$$f(C_1) \cap f(C_2) \subseteq f(C_1 \cap C_2)$$

if f is injective. Suppose $y \in f(C_1) \cap f(C_2)$. Then there exists $c_1 \in C_1$ and $c_2 \in C_2$ such that $y = f(c_1)$ and $y = f(c_2)$. But then since f is injective

$$f(c_1) = f(c_2) \Rightarrow c_1 = c_2$$

$$\Rightarrow c_1 \in C_2$$

$$\Rightarrow c_1 \in C_1 \cap C_2$$

$$\Rightarrow y = f(c_1) \in f(C_1 \cap C_2)$$

2. Composition of Functions

Let $f:A\to B$ and $g:B\to C$ be two functions such that the range of f coincides with the domain of g. Then the **composite** of f and g is the function $g\circ f:A\to C$ whose rule is

$$g \circ f(x) = g(f(x))$$
 , $\forall x \in A$.

In terms of ordered pairs we have the following defintion:

Definition 7.7. If $f: A \to B$ and $g: B \to C$ then the composition of f and g is the function $g \circ f: A \to C$ defined by

$$\{(a,c)\in A\times C\mid \exists b\in B\ \textit{s.t.}\ (a,b)\in f\ \textit{and}\ (b,c)\in g\}$$

EXAMPLE 7.8. Let \mathbb{E} denote the set of even integers; \mathbb{Z} , the set of integers; and \mathbb{N} the set of natural numbers. Let $f: \mathbb{E} \to \mathbb{Z}$ be the map defined by

$$f(e) = \frac{e}{2}$$
 , $\forall e \in \mathbb{E}$.

Let $q: \mathbb{Z} \to \mathbb{N}$ be the map defined by

$$g(z) = z^2$$
 , $\forall z \in \mathbb{Z}$.

Then the composite mapping $g \circ f : \mathbb{E} \to \mathbb{N}$ has the rule

$$e \mapsto (g \circ f)(e) = \left(\frac{e}{2}\right)^2 = \frac{e^2}{4}$$
.

Note that the composite function with the opposite order $f \circ g$ is not defined, since the domain \mathbb{E} of f is not contained in the range \mathbb{N} of g.

Example 7.9. Let

$$f: \mathbb{Z} \to \mathbb{Z}$$
 ; $f(n) = n-1$
 $g: \mathbb{Z} \to \mathbb{Z}$; $g(n) = n^2$

Then

$$(f \circ g) (n) = f (g(n))$$

$$= f (n^{2})$$

$$= n^{2} + 1 ,$$

while

$$(g \circ f) (n) = g (f(n))$$

= $g (n-1)$
= $(n-1)^2$
= $n^2 - 2n + 1$.

So even though both $f \circ g$ and $g \circ f$ are both well-defined, $f \circ g$ is not the same function as $g \circ f$.

We conclude that the composite of two functions depends on the order in which they are composed.

Definition 7.10. Let $f: A \to B$ be a bijection. The **inverse function** of f is the function $f^{-1}: B \to A$ defined by

$$f^{-1} = \{(b, a) \in B \times A \mid b = f(a)\}$$

Let us first verify that the inverse of a bijection f is indeed a function. In order for a subset of $B \times A$ to be a function we must have

$$f^{-1}(b) = f^{-1}(b') \implies b = b'$$

But since f is surjective, there exists $a, a' \in A$ such that f(a) = b and f(a') = b'. And so the "function", f^{-1} will be defined on all of B. However, since f is injective, the sets $f^{-1}(\{b\})$ and $f^{-1}(\{b'\})$ must contain only a single element of A. Hence $f^{-1}(\{b\}) = \{a\}$ and $f^{-1}(\{b'\}) = \{a'\}$. And now

$$f^{-1}(b) = f^{-1}(b') \Rightarrow \{a\} = \{a'\}$$

$$\Rightarrow a = a'$$

$$\Rightarrow f(a) = f(a')$$

$$\Rightarrow b = b'$$

Definition 7.11. If A is a set then the identity function on A is the function i_A defined by

$$i_A = \{(a, a') \in A \times A \mid a' = a\}$$

Theorem 7.12. If $f: A \to B$ is a bijection, then

- 1. $f^{-1}: B \to A$ is a bijection 2. $f^{-1} \circ f = i_A$ and $f \circ f^{-1} = i_B$
- Theorem 7.13. Let $f: A \to B$ and $g: B \to C$ be bijections. Then the composition $g \circ f: A \to C$ is a bijection and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Proof. We know from a preceding theorem that $g \circ f$ is bijection. Thus, $g \circ f$ has an inverse. Now

$$g\circ f=\{(a,c)\in A\times C\mid \exists b\in B \text{ such that } (a,b)\in f \text{ and } (b,c)\in g\}$$

so that

$$\begin{array}{lll} \left(g \circ f\right)^{-1} & = & \left\{(c,a) \in C \times A \mid \exists b \in B \text{ such } (a,b) \in f \text{ and } (b,c) \in g\right\} \\ & = & \left\{(c,a) \in C \times A \mid \exists b \in B \text{ such that } (b,a) \in f^{-1} \text{ and } (c,b) \in g^{-1}\right\} \\ & = & f^{-1} \circ g^{-1} \end{array}$$