
LECTURE 7

Functions

1. Functions as Special Cases of Relations

Definition 7.1. Let A and B be sets. A function between A and B isa non-empty relation f ⊆ A ×B

such that

(a, b) ∈ f and (a, b′) ∈ f ⇒ b = b′

The domain of f is the set of all first elements of f :

domain (f) = {a ∈ A | (a, b) ∈ f}

and the range of f is the set of all second elements of f:

range (f) = {b ∈ B | (a, b) ∈ f}

If it happens that the domain of f is the entire set A we say that f is a function from A to B, and write

f : A→ B

Definition 7.2. A function f : A→ B is called surjective if B = range (f).

Definition 7.3. A function f : A→ B is called injective (or one-to-one) if, for all ∀a, a′ ∈ A

f(a) = f(a′) ⇒ a = a′

Notation 7.4. Suppose that f is a function from A to B. If C is a subset of A, we denote by f(C) the
subset

f(C) = {b ∈ B | b = f(c) for some c ∈ C}

The set f(C) is called the image of C in B by f. If D is a subset of B, the set

f−1(A) ≡ {a ∈ A | f(a) ∈ D}

is called the pre-image of D in A by f .

Theorem 7.5. Suppose that f : A→ B. Let C,C1, and C2 be subsets of A, and let D,D1 and D2 be subsets

of B; then

1. C ⊆ f−1 (f(C))
2. f

(
f−1(D)

)
⊆ D

3. f (C1 ∩ C2) ⊆ f(C1) ∩ f (C2)
4. f (C1 ∪ C2) = f (C1) ∪ f (C2)
5. f−1 (D1 ∩D2) = f−1 (D1) ∩ f−1 (D2)
6. f−1 (D1 ∪D2) = f−1 (D1) ∪ f−1 (D2)
7. f−1 (B\D) = A\f−1 (D)

Proof:

1. Let c be an arbitary element of C, then f(c) is an element of f(C) since c ∈ C. But then c is
an element of f−1 (f(C)) ,because this set consists of all points in C that land on some element
d ∈ f(C). So every element of C is an element of f−1 (f(C)); i.e., C ⊆ f−1 (f(C))

21



2. COMPOSITION OF FUNCTIONS 22

2. Let d be an arbitrary element of D. Then d lies in either D ∩ f(A) or f−1 ({d}) = {}. In the first
case, we obviously have d ∈ f

(
f−1({d})

)
= {d} ⊂ D. In second case, we have f

(
f−1 ({d})

)
=

f ({}) = {} ⊂D. So in either case f
(
f−1 {d}

)
⊂ D. Hence, f

(
f−1(D)

)
⊆ D.

3. Homework.
4. Homework.
5. Homework.
6. Homework.
7. Homework.

Theorem 7.6. Suppose f is a funciton from A to B. Let Let C,C1, and C2 be subsets of A, and let D be

a subset of B; then

1. If f is injective, then f−1 (f(C)) = C.

2. If f is surjective, then f
(
f−1 (D)

)
= D.

3. If f is injective, then f (C1 ∩ C2) = f (C1) ∩ f (C2) .

Proof:

1. Homework.
2. Homework.
3. From the preceding Theorem we know for any map f : A→ B, and any subsets C1,C2 of A, we have

f (C1 ∩ C2) ⊆ f(C1) ∩ f (C2)

we need to show that

f(C1) ∩ f (C2) ⊆ f (C1 ∩ C2)

if f is injective. Suppose y ∈ f (C1) ∩ f (C2). Then there exists c1 ∈ C1 and c2 ∈ C2 such that
y = f (c1) and y = f (c2). But then since f is injective

f (c1) = f (c2) ⇒ c1 = c2

⇒ c1 ∈ C2

⇒ c1 ∈ C1 ∩ C2

⇒ y = f (c1) ∈ f (C1 ∩ C2)

2. Composition of Functions

Let f : A → B and g : B → C be two functions such that the range of f coincides with the domain of g.
Then the composite of f and g is the function g ◦ f : A→ C whose rule is

g ◦ f(x) = g (f(x)) , ∀ x ∈ A .

In terms of ordered pairs we have the following defintion:

Definition 7.7. If f : A→ B and g : B → C then the composition of f and g is the function g ◦f : A→ C

defined by

{(a, c) ∈ A×C | ∃b ∈ B s.t. (a, b) ∈ f and (b, c) ∈ g}

Example 7.8. Let E denote the set of even integers; Z, the set of integers; and N the set of natural numbers.
Let f : E→ Z be the map defined by

f(e) =
e

2
, ∀ e ∈ E.

Let g : Z→ N be the map defined by

g(z) = z2 , ∀ z ∈ Z .
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Then the composite mapping g ◦ f : E→ N has the rule

e �→ (g ◦ f) (e) =
( e

2

)2
=

e2

4
.

Note that the composite function with the opposite order f ◦ g is not defined , since the domain E of f is
not contained in the range N of g.

Example 7.9. Let

f : Z→ Z ; f(n) = n− 1

g : Z→ Z ; g(n) = n2

Then

(f ◦ g) (n) = f (g(n))

= f
(
n2
)

= n2 +1 ,

while

(g ◦ f) (n) = g (f(n))

= g (n− 1)

= (n− 1)
2

= n2 − 2n+1 .

So even though both f ◦ g and g ◦ f are both well-defined, f ◦ g is not the same function as g ◦ f .

We conclude that the composite of two functions depends on the order in which they are com-

posed.

Definition 7.10. Let f : A→ B be a bijection. The inverse function of f is the function f−1 : B → A

defined by

f−1 = {(b, a) ∈ B ×A | b = f(a)}

Let us first verify that the inverse of a bijection f is indeed a function. In order for a subset of B×A to be
a function we must have

f−1(b) = f−1 (b′) ⇒ b = b′

But since f is surjective, there exists a, a′ ∈ A such that f(a) = b and f (a′) = b′. And so the “function”,
f−1 will be defined on all of B. However, since f is injective, the sets f−1 ({b}) and f−1 ({b′}) must contain
only a single element of A. Hence f−1 ({b}) = {a} and f−1 ({b′}) = {a′}. And now

f−1(b) = f−1 (b′) ⇒ {a} = {a′}

⇒ a = a′

⇒ f(a) = f (a′)

⇒ b = b′

Definition 7.11. If A is a set then the identity function on A is the function iA defined by

iA = {(a, a′) ∈ A×A | a′ = a}

Theorem 7.12. If f : A→ B is a bijection, then

1. f−1 : B → A is a bijection

2. f−1 ◦ f = iA and f ◦ f−1 = iB

Theorem 7.13. Let f : A → B and g : B → C be bijections. Then the composition g ◦ f : A → C is a

bijection and (gof)
−1

= f−1 ◦ g−1.
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Proof . We know from a preceding theorem that g ◦ f is bijection. Thus, g ◦ f has an inverse. Now

g ◦ f = {(a, c) ∈ A× C | ∃b ∈ B such that (a, b) ∈ f and (b, c) ∈ g}

so that

(g ◦ f)−1 = {(c, a) ∈ C ×A | ∃b ∈ B such (a, b) ∈ f and (b, c) ∈ g}

=
{
(c, a) ∈ C ×A | ∃b ∈ B such that (b, a) ∈ f−1 and (c, b) ∈ g−1

}

= f−1 ◦ g−1


