Math 4023 Homework Set 4

1. What is the interior of the set $S = \{1, \frac{1}{2}, \frac{1}{3}, \dots\}$? What is its boundary? Does S have any accumulation points?

2. Suppose $x \in \mathbb{R}$ and $\varepsilon > 0$. What is the interior of the set $N^*(x, \varepsilon) \equiv \{y \in \mathbb{R} \mid |y - x| < \varepsilon, y \neq x\}$. What is the boundary of $N^*(x, \varepsilon)$? What are the accumulation points of $N^*(x, \varepsilon)$?

3. Prove that if A is open and B is closed, then $A \setminus B$ is open and $B \setminus A$ is closed. ($A \setminus B$ is the subset of A containing no elements of B.)

4. Prove that $cl(S) \setminus int(S) = bd(S)$.

5. Let S be an infinite bounded subset of \mathbb{R} and let $x = \sup(S)$. Prove that x is an accumulation point of S.

6. Prove that if x is an accumulation point of $S \subseteq \mathbb{R}$, then every neighborhood of x contains infinitely many point of S.

7. Let S be a subset of \mathbb{R} . Prove the following statements

- (a) $bd(S) = cl(S) \cap cl(\mathbb{R}\backslash S)$
- (b) bd(S) is a closed set.

8. Let S and T be subsets of \mathbb{R} . Prove the following statements.

(a)
$$cl(cl(S)) = cl(S)$$

(b)
$$cl(S \cup T) = cl(S) \cup cl(T)$$

- (c) $cl(S \cap T) \subseteq cl(S) \cap cl(T)$
- (d) Find an example to the the equality need not hold for part (c).

8. Let S and T be subsets of \mathbb{R} . Prove the following statements.

- (a) int(S) is an open set.
- (b) int(int(S)) = int(S)
- (c) $int(S \cup T) \subseteq int(S) \cup int(T)$
- (d) $int (S \cap T) = cl(S) \cap int(T)$
- (e) Find an example to the the equality need not hold for part (c).