
Math 4013

Solutions to Homework Problems from Chapter 6

Section 6.1

6.1.1. Let S∗ = (0,1] × [0,2π) and defined T (r, θ) = (r cos(θ), r sin(θ)). Determine the image set S and

show that T is one-to-one on S∗.

• To find the image of S∗ under T , we first calculate the image of the boundary of S∗.

Now the boundary of S∗ consists of the the following 4 curves

σ1(t) : t �→ (t,0) , t ∈ [0,1]

σ2(t) : t �→ (1, t) , t ∈ [0,2π]

σ3(t) : t �→ (1− t, 2π) , t ∈ [0, 1]

σ4(t) : t �→ (0,2π − t) , t ∈ [0, 2π]

Note the curves σ3 and σ4, while part of the boundary of S∗ do not belong to S∗.

The images of these four curves under the map T are given by

γ1(t) : t �→ T (σ1(t)) = (t, 0) , t ∈ [0, 1]

γ2(t) : t �→ T (σ2(t)) = (cos(t), sin(t)) , t ∈ [0,2π]

γ3(t) : t �→ T (σ3(t)) = (1− t,0) , t ∈ [0,1]

γ4(t) : t �→ T (σ4(t)) = (0, 0) , t ∈ [0,2π]

Thus, the image of γ1 is portion of the x-axis between 0 and 1, the image of γ1 is the unit circle,

the image of γ3 is the portion of the x-axis between 0 and 1, and the image of γ4 is the origin.

It would appear that the portion of the x-axis between 0 and 1 is counted twice - however recall

that the curve σ3 does not lie in the domain of T . Nor does the curve σ4. Therefore, the image curves

γ3 and γ4 are not to be considered as being part of S. We conclude that the image of S∗ by T is the

unit disk minus the origin.

To show that the map T is one-to-one, we must show ı(i) that T is surjective; i.e., every point of

the unit disc is the image of the form (x, y) = T (r, θ) for some (r, θ) ∈ S∗.

This is already evident from the definition of S;

S :=
{

(x, y) ∈ R2
| (x, y) = T (r, θ) , for some(r, θ) ∈ S

∗
}

.

ı(ii) that T is injective; i.e., if T (r, θ) = T (r′, θ′) then (r, θ) = (r′, θ′).

Well, suppose

(r cos(θ), r sin(θ)) = (r′ cos(θ′), r′ sin(θ′))

This can happen if and only if

r = r
′ = 0

or

r = r
′ and θ = θ

′ + 2πn , n ∈ Z .

But r = r
′ = 0 is excluded from S

∗, and there are no two (r, θ), (r′, θ′) in S
∗ for which θ = θ

′ + 2nπ.

Hence, the transformation T is one-to-one.

6.1.2. Let D∗ = [0,1]× [0,1] and define T on D
∗ by T (u, v) =

(
−u2 + 4u, v

)
. Find D. Is T one-to-one?

• The region D
∗ is the region in the uv-plane bounded by the lines

σ1(t) = (t,0) , t ∈ [0,1]

σ2(t) = (1, t) , t ∈ [0,1]

σ3(t) = (t,1) , t ∈ [0,1]

σ4(t) = (0, t) , t ∈ [0,1]
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The region D = T (D) should therefore be the region in the xy-plane bounded by the curves

γ1(t) = T (σ1(t)) =
(
−t2 + 4t,0

)
, t ∈ [0,1]

γ2(t) = T (σ2(t)) = (3, t) , t ∈ [0, 1]

γ3(t) = T (σ3(t)) =
(
−t2 + 4t,1

)
, t ∈ [0,1]

γ4(t) = T (σ4(t)) = (0, t) , t ∈ [0, 1]

The curve γ1 is the line segment along the x-axis between (0,0) and (3, 0), γ2 corresponds to the vertical

line segment between the points (3,0) and (3, 1), γ3 corresponds to the horizontal line segment between

the points (3,1) and (0,1), and γ4 corresponds to the vertical line segment between (0, 0) and (0,1).

Thus, S = [0,3]× [0,1].

By definition T : S∗ → S is surjective. We check to see that T is injective. If

(
−u2 + 4u, v

)
=

(
−u′2 + 4u

′
, v

′
)

then we must have

u′ =
4±
√

16+4(u2−4u)

2
= 2± (u− 2) =

{
u

4− u

v
′ = v

But if u ∈ [0, 1], u′ = 4− u 
= [0,1], So it is not possible for two distinct points in S
∗ to land on the

same point in S under the map T . Thus, T is both surjective and injective; hence T is one-to-one.

6.1.3. Let D∗ = [0, 1] × [0,1] and define T on D
∗ by T (u, v) = (uv, u). Find D. Is T one-to-one? If not,

can we eliminate some subset of D∗ so that on the remainder T is one-to-one?

• The region D
∗ is the region in the uv-plane bounded by the lines

σ1(t) = (t,0)

σ2(t) = (1, t)

σ3(t) = (t,1)

σ4(t) = (0, t)

The region D = T (D) should therefore be the region in the xy-plane bounded by the curves

γ1(t) = T (σ1(t)) = (0, t)

γ2(t) = T (σ2(t)) = (t,1)

γ3(t) = T (σ3(t)) = (t, t)

γ4(t) = T (σ4(t)) = (0,0)

Thus, the image of the curve σ1 coincides with the y-axis; the image of the curve σ2 is just the

horizontal line y = 1; the image of the curve σ3 coincides with the diagonal line y = x; and image of

the curve σ4 is just the point (0,0). Thus, D coincides with the interior of the triangle with vertices

(0,0), (0,1), and (1,1).

This map cannot be one-to-one since every point along the curve σ4 is mapped to the point (0,0).

However, if we remove this curve from the domain of T , then the map becomes one-to-one.

6.1.4. Let T (x) = Ax where A is a 2× 2 matrix. Show that T is one-to-one if and only if the determinant
of A is non-zero.

• If T is one-to-one then it must have an inverse. However, a matrix A has an inverse if and only if its
determinant is non-zero. Thus, T is one-to-one if and only if det A 
= 0.

6.1.5. Suppose T : R2
→ R

2 is linear; i.e, T (x) = Ax, where A is a 2× 2 matrix. Show that if detA 
= 0,
then T takes parallelograms to parallelograms. (Hint: any parallelogram in R2 can be described as a set
{r = p+ λv + µw | λ,µ ∈ [0, 1]} where p, v, w are suitable vectors in R2 with v not a scalar multiple of
w.
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• Suppose

P =
{
r ∈ R

2
| r = p+ λv + µw | λ, µ ∈ [0,1]

}

is a parallelogram. Then T (P ) is

T (P ) =

{
r

′ ∈ R2 | r′ = A(p+ λv + µw) , λ, µ ∈ [0, 1]
}

=
{
r

′ ∈ R2 | r′ = Ap+A(λv) +A(µw) , λ, µ ∈ [0,1]
}

=
{
r

′ ∈ R2 | r′ = (Ap) + λ(Av) + µ(Aw) , λ, µ ∈ [0,1]
}

=
{
r

′ ∈ R2 | r′ = p
′ + λv

′ + µw
′) , λ, µ ∈ [0,1]

}

where p′ = Ap, v′ = Av, and w
′ = Aw. If we can demonstate that v′ 
= tw

′, for any t ∈ R, then we

may conclude that T (P ) is a parallelogram.

We argue as follows. Suppose v′ = tw
′. Then

0 = v
′ − tw = Av − tAw = A(v − tw) .

Since v and w are not scalar multiples of one another, v − tw must be a non-zero vector. But if the

matrix A maps a non-zero vector to zero, it must be singular; hence, det A = 0. But hypothesis,

detA 
= 0. Therefore, v′ 
= tw
′. Hence, T (P ) is a parallelogram.
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Section 6.2

6.2.1. Let D be the unit circle. Evaluate ∫
D

exp
(
x
2

+ y
2
)
dxdy

by making a change of variables to polar coordinates.

• The coordinate transformation

T : (r, θ) �→ (r cos(θ), r sin(θ))

maps the rectangle R = {0 ≤ r ≤ 1 , 0 ≤ θ < 2π} onto the unit circle. The Jacobian of this transfor-

mation is

J(T ) =

∣∣∣∣det

(
∂x

∂r

∂x

∂θ
∂y

∂r

∂y

∂θ

)∣∣∣∣
=

∣∣∣∣∂x∂r
∂y

∂θ
−

∂y

∂r

∂x

∂θ

∣∣∣∣
= |(cos(θ)) (r cos(θ)) − (sin(θ)) (−r sin(θ))|

=
∣∣r (cos

2
(θ) + sin

2
(θ)

)∣∣
= r

Thus, by the change of variables formula∫
D

exp
(
x
2

+ y
2
)
dxdy =

∫
R

exp
(
r
2
)
J(T )dr dθ

=

∫
1

0

∫
2π

0

e
r
2

rdθ dr

= 2π

∫
1

0

re
r
2

dr

= 2π

(
1

2

∫
1

0

e
u
du

)

= π (e− 1)

6.2.2. Let D be the region 0 ≤ y ≤ x and 0 ≤ x ≤ 1. Evaluate∫
D

(x + y)dx dy

by making the change of variables x = u + v, y = u − v. Check your answer by evaluating the integral

directly by using an iterated integral.

• Let T be the coordinate transformation defined by

T : (u, v) �→ (u + v, u− v)

The Jacobian of this transformation is

J(T ) =

∣∣∣∣∂x∂u
∂y

∂v
−

∂y

∂u

∂x

∂v

∣∣∣∣
= |(1)(−1)− (1)(1)|

= 2

To find the pre-image D∗ of the region D by T , we first calculate the inverse of T . Solving

x = u + v

y = u− v
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for u and v yields

u =
1

2
(x + y)

v =
1

2
(x− y) .

Thus, the pre-images of the three boundary curves of D

σ1(t) : t �→ (t, 0) , t ∈ [0,1]

σ2(t) : t �→ (1, t) , t ∈ [0,1]

σ2(t) : t �→ (t, t) , t ∈ [0, 1]

will be

γ1(t) = T−1
(σ1) =

(
1

2
t,

1

2
t

)
, t ∈ [0,1]

γ2(t) = T−1
(σ2) =

(
1

2
(1 + t) ,

1

2
(1− t)

)
, t ∈ [0, 1]

γ1(t) = T−1
(σ1) = (t,0) , t ∈ [0, 1]

The area in the uv-plane bounded by these three lines will be the triangle with vertices (0,0),
(
1

2
, 1
2

)
,

and (1, 0).

This region can be regarded as a region of type II.

D∗

=

{
0 ≤ v ≤

1

2
, v ≤ u ≤ 1− v .

}

Thus, ∫
D

(x+ y)dxdy =

∫
D∗

2uJ(T )du dv

=

∫ 1

2

0

∫
1−v

v

4u du dv

=

∫ 1

2

0

2
((
1− v)

2 − v
2
))
dv

=

∫ 1

2

0

2 (1− 2v) dv

= 1−
1

2
− 0− 0

=
1

2

To check our result we shall integrate over D directly. Now

D = {0 ≤ x ≤ 1 , 0 ≤ y ≤ x}

so
∫

D

(x+ y)dxdy =

∫
1

0

∫
x

0

(x+ y) dy dx

=

∫
1

0

(
xy +

1

2
y
2

)∣∣∣∣

x

0

dx

=

∫
1

0

(
3

2
x
2

)
dx

=
1

2
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6.2.3. Let T (u, v) = (x(u, v), y(u, v)) be the mapping defined by T (u, v) = (4u,2u+3v). Let D∗ be the

region in u− v plane corresponding to the rectangle [0,1]× [1,2]. Find D = T (D∗) and evaluate

(a)
∫
D
xy dA

(b)
∫
D

(x− y)dA

• To find the image D of the the region D
∗ in the xy-plane, we note the map T (u, v) is linear in u and

v. In Problem 6.2.10 we showed the image of a parallelogram in R2 (in particular, the image of a

rectangle) by a linear map T : R2
→ R

2 is always a parallelogram. To prescribe the image D of D∗

by the map T is is therefore sufficient to present its four vertices. But these vertices will just be the

images of the corners of D∗ by T ; thus, the region D will be the parallelogram in the xy-plane with

vertices

v1 = T (0, 1) = (0,3)

v2 = T (1, 1) = (4,5)

v3 = T (1, 2) = (4,8)

v4 = T (0, 2) = (0,6)

Let us now compute the Jacobian of the transformation.

J(T ) =

∣∣∣∣∂x∂u
∂y

∂v
−

∂y

∂u

∂x

∂v

∣∣∣∣
= |(4)(3) − (2)(0)|

= 12

Thus,

∫
D

xy dxdy =

∫
D∗

(4u)(2u + 3v)J(T )du dv

= 24

∫
1

0

∫
2

1

(
4u

2
+ 6uv

)
dv du

= 24

∫
1

0

(
4u

2
v + 3uv

2
)∣∣2

1
du

= 24

∫
1

0

(
8u

2
+ 12u− 4u

2 − 3u
)
du

= 24

(
4

3
+

9

2

)

= 32 + 108

= 140
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and ∫
D

(x− y) dx dy =

∫
D∗

(4u− 2u− 3v)J(T )du dv

= 12

∫
1

0

∫
2

1

(2u− 3v) dv du

= 12

∫
1

0

(
2uv −

3

2
v
2

)∣∣∣∣
2

1

du

= 12

∫
1

0

(
4u− 6 − 2u +

3

2

)
du

= 12

(
u
2 −

9

2

)∣∣∣∣
1

0

= 12 − 54

= −42

6.2.4. Define T (u, v) =
(
u
2 − v

2
,2uv

)
. Let D

∗ be the set of (u, v) with u2 + v2 ≤ 1, u ≥ 0, v ≥ 0. Find

T (D∗) = D. Evaluate ∫
D

dA .

• To find the image of D∗, we calculate the images of the boundary curves of D∗. The following three

curves form the boundary of D∗

σ1(t) = (t,0) , t ∈ [0,1]

σ2(t) = (cos(t), sin(t)) , t ∈
[
0,

π

2

]

σ3(t) = (0, t) , t ∈ [0,1]

The images of these curves under the map T are given by

γ1(t) = T (σ1(t)) =
(
t
2
,0

)
, t ∈ [0, 1]

γ2(t) = T (σ2(t)) =
(
cos2(t) − sin2(t), 2 cos(t) sin(t)

)
, t ∈

[
0,
π

2

]

γ3(t) = T (σ3(t)) =
(
−t2,0

)
, t ∈ [0,1]

These curves bound the region D pictured below:

The Jacobian of the transformation T is

J(t) =

∣∣∣∣
∂x

∂u

∂y

∂v
−

∂y

∂u

∂x

∂v

∣∣∣∣

= |(2u)(2u) − (−2v)(2v)|

= 4
(
u
2 + v

2
)

Thus,
∫

D

dy dy =

∫

D∗

J(T )du dv

=

∫
D∗

4
(
u
2

+ v
2
)
dudv

Since D∗ is the unit disc, this last integral will be evaluated most easily if we make another change of

variables to polar coordinates:

u = r cos(θ)

v = r sin(θ)
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The Jacobian of this transformation is r. Thus,

∫
D∗

4
(
u
2

+ v
2
)
dudv =

∫
1

0

∫
2π

0

(
4r

2
)
rdθ dr

= 8π

∫
1

0

r
3
dr

= 2π

6.2.5. Let T (u, v) be as in Exercise 6.2.4. By making this change of variables, evaluate

∫
D

dA
√
x2 + y2

• The coordinate transformation in 6.2.4. is given by

x = u
2
− v

2

y = 2uv

and so the associated Jacobian is

J(T ) =

∣∣∣∣det
(

∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v

)∣∣∣∣

=

∣∣∣∣det
(

2u −2v

2v 2u

)∣∣∣∣

= 2u2 +2v
2

∫

D

dA
√
x2 + y2

=

∫

D∗

1
√
(u2 − v2) + (2uv)2

J(T )

=

∫
1

−1

∫ √
1−u2

0

2u
2
+2v

2

√
u4 +2u2v2 + v4

dvdu

=

∫
1

−1

∫ √
1−u2

0

2u
2
+2v

2√
(u2 + v2)

2

dvdu

=

∫
1

−1

∫ √
1−u2

0

2dvdu

=

∫
1

−1
2

√
1− u2du

=

(
x

√
(1− x2) + arcsinx

)∣∣∣
1

−1

= 0 +
π

2
−

(
0 +

(
−

π

2

))

= π

6.2.6. Integrate zex
2
+y

2

over the cylinder x2 + y
2
≤ 4, −2 ≤ z ≤ 3.

• The cylider D =
{

(x, y, z) ∈ R3
| x

2
+ y

2
≤ 4 , −2 ≤ z ≤ 3

}
is the image of the rectangle D

∗

={
(r, θ, z) ∈ R

3
| 0 ≤ r ≤ 2 , 0 ≤ θ < 2π , −2 ≤ z ≤ 3

}
under the (polar) coordinate transformation

T : (r, θ, z) �→ (r cos(θ), r sin(θ), z) .
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The Jacobian of this transformation is

J(T ) =

∣∣∣∣∣∣
det




∂x

∂r

∂x

∂θ

∂x

∂z
∂y

∂r

∂y

∂θ

∂y

∂z
∂z

∂r

∂z

∂θ

∂z

∂z



∣∣∣∣∣∣

=

∣∣∣∣∣∣
det




cos(θ) −r sin(θ) 0

sin(θ) r cos(θ) 0

0 0 1



∣∣∣∣∣∣

=
∣∣r (cos2(θ) + sin2(θ)

)∣∣
= r

Thus, ∫
D

ze
x
2
+y

2

dA =

∫
D∗

ze
r
2

J(T )dA

=

∫
3

−2

∫
2

0

∫
2π

0

zre
r
2

dθ dr dz

= 2π

∫
3

−2

∫
2

0

zre
r
2

dr dz

= π

∫
3

−2

∫
4

0

ze
u

du dz

= π

∫
3

−2

z
(
e
4
− 1

)
dz

=
π

2

(
e
4
− 1

) (
3
2
− (−2)

2
)

=
5π

2

(
e
4
− 1

)


