Math 4013
Solutions to Homework Problems from Chapter 5

Section 5.1

5.2.1. Evaluate the following interated integrals.
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5.2.1(a). Evaluate the integral in 5.2.1(a) by integrating first with respect to « and then with respect to y.
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5.2.1(b). Evaluate the integral in 5.2.1(b) by integrating first with respect to z and then with respect to y.

/01 [/0”/2 (ycos(z) +2) dx] dy = /01 (ysin(z) + 2z) 3/2 dy

= /01(y+7r)dy
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5.2.3. (a) Demonstrate informally that the volume of the solid of revolution shown in Figure 5.1.13. is

"/ @)

e To calculate the volume of a solid of revolution, we first imagine partitioning the interval [a, ] into n

subintervals of width

h—
Ax = ¢

n

This will induce a corresponding partition of the solid of revolution; each slice of which looking pretty
much like a cylinder of length Az and radius f(x). Since the volume of a cylinder is given by

Voley = w2l
we see that the contribution of the " slice to the total volume of the cylinder will be
AV, =7 (f(:))* Az

where z; € [a+ (n — 1)Az,a +nAx] (that is to say, x; is point in the n'* subinterval of [a,b]). The
total volume of the solid of revolution is thus approximated by the Riemann sum

Vol = Zn:AVi = anw(f(gci))2 Ax
i=1

=1
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Taking the limit as n goes to infinity we can replace the Riemann sum by the corresponding Riemann
integral, to obtain

Vol = /abw(f(x))zdx

|

(b) Show the volume of the region obtained by rotating the region under the graph of parabola y =
—2? 422 + 3, —1 < 2 < 3, about the x-axis is 5127/15.

e Plugging into the formula “derived” in Part (a), we have

3
Vol = /W(—x2—|—2x—|—3)2dx

-1

3
= / 7r(x4—4x3—2x2+12x+9)dx
-1
3

1 2
= 7 <5x5 —zt— 31:3—0—61:2—0—9:10)

-1
= o (37 — 150" — 102”1 9027 + 1352) [,

= %(729—1215—270+810+405+3+15—10—90+135)
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5.1.4. Evaluate the following double integrals
(a)

/(x2y2—|—x)dxdy , R=10,2] x [-1,0]
R
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/ye‘”ydA . R=1[0,1]x[0,1]
R

1,1
/ye‘”y dA = //ye‘”ydxdy
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R
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/(a:c+by+c)dA . R=1[0,1x0,1]
R

11
/(cwc—l—by—l—c)dA = / (ax + by +¢) dy dx
R o Jo

1
= / axy + = by —|—cy>
0
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= /(cwc—l— —|—c>dx
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5.2.5. Compute the volume of the solid bounded by the surface 2 = sin(y), the planes x =1, z =0,y = 0,
y=7%5,2=0.

e This solid is interpretable as the volume under the graph of f(z,y) = sin(y) and above the rectangle
R:{(x,y)eR2|0§x§1 , O§y§g}

We can therefore apply the general formula

Vol = /f(x,y)dA

/ dx/ (sin(y

_ /de< cos<72r)—|—cos(0))
= /Oldx

= 1



Section 5.3

5.3.1(a). Evaluate the following iterated integral and draw the region D determined by the limits of
integration. State whether the region D is of type I, type II, or both.

1 z?
/ / dydx
0o Jo

e The region of integration is bounded by the curves
y = a?
y = 0
z = 1
x 0

This is just the area under the parabola y = 22 between x = 0 and = = 1.
Computing the iterated integral we get

1 pa2? 1 R
// dydr = /y|g dx
0o Jo 0
1
= /xgdx
0

O

5.3.1(b). Evaluate the following iterated integral and draw the region D determined by the limits of
integration. State whether the region D is of type I, type II, or both.

1 pe®
/ / (x +y)dy dx
0o J1

e The region of integration is bounded by the curves

xz

Y €
y = 1
r = 1
r = 0

Computing the iterated integral we get

1 e® 1
1
/ / (x+y)dyde = / <:cy + —y2>
0o J1 0 2
1




5.3.2. Use double integrals to compute the area of a circle of radius r.

e To find the area of a circle, we regard it as the region of type I bounded by the following four curves

= .\ r2 _ g2
y = r2 _ g2
r = -r
x = r

Thus,
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5.3.3. Let D be the region bounded by the x and y axes and the line 3z + 4y = 10. Compute
/ (x2 + y2) dA
D

e To compute this integral we consider the region D as a region of type I bounded by the curves

y = 0

10 3
= ——-x

4 11

xr = 0
10

r = —
3

Thus,

/D (x2 + y2) dA
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5.34. Let D = {(x,y) ER?|1<2?+y?2<2 |, y> 0}. Is D an elementary region? Evaluate
/ (14+zy)dA
D

e A sketch of the region D appears below

1N

2 -1 1 2 X

To evaluate the integral over D, we regard D as the union of three regions of type I

D =DyUDyU Dy

D, = {(x,y)€R2|—\/§§x§—1 , 0§y§v2—x2}
Dy = {(x,y)€R2|—1§x§1 , \/1—x2§y§\/2—x2}
D = {(x,y)ERQHSxS\/é , 0§y§V2—x2}

Thus

?

/D(l‘ny)dA /D(1+:ch)dA+/D(1—|—xy)dA+/ (1+ zy)dA

D

L 1 Ve
/ / (14 zy)dy dx —|—/ / (14 xy) dydx
—-v2J0o -1

VisaE
V3 pvEaR
/ / (1+zy) dy dy
1 0

V2—z2

! 1
d:):—l—/ <y—|—§xy2>
0 ~1

2— 12

V2—z2
dx
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_a 2 1 2
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Section 5.4

5.4.1(a). Change the order of integration, sketch the corresponding region, and evaluate the following
integrals both ways.

(a)

/01 /:(xy)dy dx

e Noting the limits of integration, we see that this iterated integral corresponds to the type I

DI:{(x,y)€R2|0§x§1 , xgygl}

Y y=x

1 y=1

From the sketch above, we see that region can also be regarded as the type Il

Dir={(z,y) eR*|0<y<1 , 0<z<y}

/01 /:(:cy)dyd:c:/DI(:cy)dA:/DH(xy)dA:/ol /Oy(xy) daxdy

Computing the iterated integral on the left hand side, we obtain

/Ol/zl(xy)dydx = /01 <%xy2>

‘We thus have

I
|HH>|H/\

Computing the iterated integral on the far right hand side, we obtain
y
dy

[ fiomes = [ ()]
[ ()

().

1

8

0



z cos(6)
/ / cos(0)dr do
0 0

e Noting the limits of integration, we see that this iterated integral corresponds to the type II

zhz{mmemﬂogegg ,ogrgmqm}
r

1
I = cos{g)

I
i

From the sketch above, we see that region can also be regarded as the type Il
Dip={(r0)eR*|0<r<1 , 0<60<cos '(r)}

‘We thus have

z cos(6) 1 pcos™1(r)
/ / cos(0)dr df = / cos(0)dA = / cos(0)dA = / / cos(0)dé dr
0 0 Dy Drr 0 JO

Computing the iterated integral on the far left hand side yields

gy
2

z cos(6) cos(0)
/ / cos(B)drdfd = / rcos(0) |, de
o Jo 0
=
= / cos®(0)do
0
1 1 2
= <59 + ZI sin(29)> .
—
4
Computing the iterated integral on the far right hand side yields
1 cosfl('r) 1 cosfl('r)
/ / cos(0)d0 dr = / sin(0) dr
o Jo 0 0

= /01 sin (cos™"(r)) dr

To carry out this last integration we make a change of variables

r = cos(u)
dr = —sin(u)du
r=1 = u=20
T
r=0 = U=

2
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1
/ sin (cos™ ' #r)) dr =
0

1 2—y
/ / (z +y)° dedy
0o J1

e Noting the limits of integration, we see that this iterated integral corresponds to the type II

Dir={(zy) eR?|0<y<1 , 1<z<2—y}

\

From the sketch above, we see that region can also be regarded as the type I
Di={(z,y) eR*|1<z<2 , 0<y<2-uz}

‘We thus have

1 2—y 2 2—z
/ / (2 + y)2da dy = / (z+y)2dA = / (& + y)2dA = / / (2 +y)2dyda
0 J1 Drr Dy 1 J0
Computing the iterated integral on the far left hand side, we obtain
12—y 1 r2-y 3
/ / (x+y)dedy = / - (@+y)
0 1 0 1 3 1
1
= / <§ (2° - (y+ 1)3)> dy
0

= <§y—1—12(y+1)4> 1

2-y
dx dy

0

_ 8 16 1
T3 12 12
17

12



13

Computing the iterated integral on the far left hand side, we obtain

2 22—z 21 5
/1/0 (x +y)’dyde = /1§(x+y)

2—zx
dx

_ I 168 1
- 3 12 312
_
12

O

5.4.2. Compute the volume of the ellipsoid with semiaxes a, b, and ¢. (Hint: use symmetry and first find
the volume of half the ellipsoid.)

e The boundary of the ellipsoid with semiaxes a, b, and ¢ is the solution set of the equation
1 2 2 2N 2
)" (' ()
a b c

To compute the volume of this solid, we first observe that the top half of this solid is just the volume
under the graph of

lying above the region

R= {(x,y) cR? | <§)2+ (%)2 <1 }

in the xy-plane. Thus, the volume of the ellipsoid should be twice that of volume lying under the
graph of f(x,y) and above the region R. Thus,

Vol = Q/Rf(x,y)dA

Now we can regard the region R as the type I region prescribed by

f 2 f 2
b b
R={(r,y)eR?|—a<r<a , - b2—<§> <y < b2—<§>

v = [ [ (- ()
| /“J%M () - vy

Thus,
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FIiGURE 1

5.4.3. Evaluate

[ e vaa
D

where D is the interior of the triangle with vertices (0,0), (1,3) and (2,2).

e This regions looks like Observe the region D is bounded by the lines

y = 3z , 0<z<1
y = 44—z , 1<z<2

and can thus be regarded as the union of two type I regions
D=D1UDs,
where

Dy = {(%Q)ER2|0§$§1 , xéyégx}
D, = {(wyeR?|1<a<2 , w<y<d4—z}
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5.4.4. Evaluate
/ y3 (x2 + y2)73/2 dA
D

where D is the region determined by the conditions % <y<landz®+y%<1.

e D is just the portion of the unit disk that lies above the line y = 1. This region is easily rendered as
region of Type I: noting that the line y = % intersects the unit circle at (%@, %) and (%3,%), we
see that

3 3 1
DZ{(%Q)ERQI—%SxS% , §§y§\/1—x2}

So

~3/2 \/5/2 Vi1—z2 s
/ v (2° +9°) dA = / d:c/ dy <y2 (2 +97) 2)
D —3/2 1

The first integral looks a little difficult. Let’s see if things simplify when we regard D as a region of
Type I1. If we prescribe D by

1
D:{(:c,y)eR2|§§y§1 | —\/1—y2§xs\/1—y2}
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then

1 1—y2 a
3/(..2 2\—3/2 _ 3 /.2 2%
/L)Z/(:c+y) dA = /ldy/\/_gy (2 +y*) *da

Section 5.6

5.6.1. Evaluate
/ z2dvV
w
where W = [0,1] x [0, 1] x [0, 1].

o We have

1 1 el
/xQdV = ///xdedydx
w o Jo Jo
1 e L
= //x2z|0dydx
o Jo
11
//xQdydx
o Jo
! 1
= /x2y|0dx
0
1
= /xzdx
0

5.6.2. Evaluate

where W = [0,1] x [0, 1] x [0, 1].
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5.6.3. Evaluate

/ (2x + 3y + 2)dV
w

where W =[1,2] x [-1,1] x [0,1].

[ ]
2 1 pl
/(2x+3y—|—z)dV = // /(2x+3y+z)dzdydx
w 1 J-1Jo
// <2xz+3yz—|—§z2
// <2x—|—3y—0— ) dy dz
—/ 2z —0—3 —0—1
A yroy Ty
= /2 2:Jc+§—|—1 2:6—0—§ 1 dx
A 22 2 2
2
= /(4x+1)dx
1

= ()
= 842-2-1

= 7

1
dy dx

5.6.4. Evaluate

1 2x z+y
/ / / dz dy dx
0 0 2492
and sketch the region of integration.

e The region of integration is bounded by the planes x =0, x =1,y =0, y = 2z, 2 = z 4+ y and the
surface 2 = 2% +y2.
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5.6.6. Compute the integral of the function f(z,y,2) = 2 over the region W in the first octant of R?
bounded by the planes y =0, 2 =0, x +y = 2, 2y + = = 6, and the cylinder y? + 2% = 4.

e We first need to develop a description of the region W that will allow us to determine the appropriate
limits of integration for an iterated integral over W .
We first consider the range of the variable z for fixed  and y. From the equations of the boundaries

we see that
0<z2<Va—y?
Let us first consider the maximal range of y for arbitray = and z. The boundary equation

r+y=2
constrains y to be less than y since z (and y and %) must be positive. The boundary equation

2+ =6
is a bit weaker, in merely requires 4y < 3. The last boundary equation

yi4 =4
constrains y also constrains y < 0. We conclude that the variable y ranges from 0 to 2 over the region
of integration.

We next consider the range of x for fixed y. We have two boundary equations relating y to x. They
are equivalent to

2-y
6 — 2y
Noting that if y € [0,2]
2_y<6-2y |

we conclude that the range of = for fixed y is given by
2—y<x<6—2y
Finally, we consider the range of z. In view of the requirements
z > 0
yi42? < 4
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we conclude

Thus,
W:{(x,y,z)€R3|0§y§2 . 2—y<z<6-2 , 0<=2< 4—y2}

and

/ flz,y,2)dV = zdz dx dy
w

[ =)

Nc\w
Nz‘w\m
—

[=2)

B > (4—y )dxdy

(4—y*) (6 —2y —2+y)dy

(3]

(4—v*)(4—y)dy
/02 (16 — 4y — 4y* +¢*)

4 1
<16y — 22— -y 4+ —y4>

ﬁc\

2

Nl—= NI~ NI= N =

37 a7 )|,

16
= 16—4——+2
3—0-

26
3

5.6.7. Evaluate

/ xyz dV
s

where S is the region determined by the conditions z > 0, y > 0, 2> 0, and 22 + % + 22 < 1.

e For fixed z and y we have
0<2</1—a2—y2
For fixed x we have y restricted to lie between
0<y<V1-22

and then finally, x is restricted to lie between

0<zx<1



Thus, S is an elementary region and the integral over S is calculable as

/ xyz dV
s

1 V1—z2 \1—z2—y2
/ / / xyz dz dy dz
0o Jo 0
1 pViea? Vi-z?—y?
/ / ~xyz? dy dx
0o Jo 2 0
1t V1—22
bk
Il

1 1
- - 2 _ -, 3.2 = 4
2/0 <2xy 2" Y 4”)

y(l—xz—yz)dy dx

V1—z2
dx

0

1 [t/1 1 1

5/0 <§x(1—x2)—§x3(1—x2)—1x(1—x2)2> dx

1 1

§/ (21:—21:3—2x3+2x5—x+2x3—x5)dx
0

1 1

g/ (x—2x3—|—x5) dx
0

1/1 1 1 !

g (e B R

8\ 2 2 6 o

1/1 1+1

8\2 2 6

1
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