Math 4013
Solutions to Homework Problems from Chapter 4

Section 4.2

4.2,1. Calculate the arc length of the following curves.

(a) o(t) = (6¢,3%,¢%) , te0,1]
o Well,
o'(t) = (6,6t,3t?)
S0,
llo'@®)]] = /364 36t2+ 9t
9 (¢t + 42 +4)
= /92 +2)*
= 3(¢*+2)
Thus,

(b) o(t) = (sin(3¢),cos(3t),2t2) , t€[0,1]

o Well,
o'(t) = (3 cos(3t), —3sin(3t), 3¢/ 2)

S0

\/9 cos2(3t) +9 sin2(3t) + 9t
9(1+1¢)

3V1+1

lo' @]

Thus,
ty
Lio] = / o (&) it
t.
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1
/ 3V 14-tdt
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2
= /Bﬁdu , u=1+1
1

2

_ ua/z‘
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23/2 _1
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4.2.2, Let ¢ be the path o(t) = (¢,¢tsin(t), £ cos(t)). Find the arc length of o between (0,0,0) and (7,0, —7).

o Well,
o'(t) = (1,sin(t) + t cos(t), cos(t) — ¢ sin(t))
S0
lo'@)]] = \/12 + (sin(t) + £ cos(t))? + (cos(t) — tsin(t))?
= \/1 +sin®(t) + 2 cos?(t) 4 cos2(t) + t2 sin®(t)
= V2422
Note also that we must have t; =0 and t; = 7 so that
o) = (0,0,0)
o(ty) = (7,0,—7)

Therefore, the arc lenght will be given by the following integral
Ly
L) = [ '@
t;
= V2+t2dt

0

t 2 7
= - t2+2+§10g‘t+\/t2+2‘
0

2
= E\/W2—|—2—|—log‘7r—|—\/7r2—l—2‘ —log‘\/i‘

2
(See integral #43 in the tables at the back of the text.)

Section 4.3

4.3.1. A particle of mass m moves along a path r(¢) according to Newton’s law in a force field F = —VV
on R3, where V is a given potential energy function.

(a) Prove that in the energy along the trajectory
1
B=mlr (O)F +V (x(0)

is constant in time.

e We have
% — % <%m||r’(t)||2 + V(r(t))>
md ,, ' d
= 3 (r'(t)-r'(t)) + p (V (x(2)))
m " ’ I 1" dr
= S @MY@ +r'O @)+ VY

= mr’(t)-r'(t) + VV - r'(1)
(In the third line we have simply applied the product and chain rules to, respectively, the first and
second terms of the second line.) According to Newton’s law F = ma, so
mr’ =F=-VV

Thus,

dE
E = —VV . I‘,(t) + VV . I‘,(t) =0



(b) If the particle moves on an equipotential surface, show that its speed is constant.
e Well, the particle speed is just the magnitude of the velocity vector. So it suffices to prove that

L (I @) =

whenever the particle moves along an equipotential surface.

But

L () 0)

= () () + ) (D)
2'(t) - v (1)
= 220 (")

= 220 IV ()

L ()

Now we know from Section 2.5, that the gradient vector VV evaluated at r(¢) will be normal to
the surface

S={xeR|V(x) =k}

at the point r(t). On the other hand, since the trajectory is constrained to lie in such a surface, the
tangent vector r'(¢) at a point r(t) must always be perpendicular to the surface normal. In other

words,
r'(t)- VV (£(t)) = 0
Thus,
L (I OIP) = —2x'()- TV (5(1)) = 0

4.3.2. Sketch a few flow lines of the vector field F(z,y) = (z, —y).

e The flow lines for this vector field must satisfy the differential equation

do _

But

<%"‘>_< (1) ) G = 0 = 0u(t) =o€
doy | T = —t

T —oy(t)

so the flow lines of F will be curves of the form

o(t) = (xaet,yae’t)



D A R S T R O N
PV AV AT A A A A T T R T T T
B o L T
Rl ol R T T
I T T T T
B I & T S N N N,
P N L T O T T T
B .. e I T O T T e Y
_"'\—"\—'I—'H—_{'\-h\'ifdi'-:l—l'—l-—l-—ﬁ

L e T T T T T T T T O e
T, e, e T, e, e, %, W % W | A A L LA L
‘*-.‘*-.‘\-.MM\.'\\\_.T_I.‘)!JJ-‘.-'.-’.-’
. . T T R I I I A
B T T e T T T I B R A
B T T T T T T T I B I
RSNNNANY NN ST
N N W W N T 20 N DY B B A R G P

4.3.3. Let c(t) be a flow line of a gradient field F = —VV. Prove that V (c()) is a decreasing function of
t. Explain.
.

%[V(c(t))] = W (c(t))%
VV (c(t)) - F (c(?))
= YV (c(t)- (=VV (c(t))

= —[IVV () II”

Since the magnitude of a vector is either positive or zero, we conclude that % [V (c(t))] is either
negative or zero.

To understand this, recall that —VV(r) represents the direction of the fastest decrease in V at the
point r. Thus, the the flow lines of a vector field F = —VV will always move in the direction of the
fastest decrease in V'; V' obviously V will be decreasing along these flow lines.

In a physical situation, F is interpretable as a force field and V' is a corresponding potential energy.
The fact that V' is always decreasing along the flow lines of F = —VV implies that a particle acted
upon by F always moves along a path that decreases its potential energy. (Now you know why apples

fall.)

4.3.4. Sketch the gradient field —VV for V(z,y) = (z+y)/ (x2 —|—y2). Sketch the equipotential surface
V=1
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The easiest way to approach this problem is first uncover the nature of the equipotential surfaces.
Now the points on an equipotential surface for V' must satisfy an equation of the form

rT+y
24y
which is equivalent to
1 1
2 2
_ = _Zy=0
T kx +vy ky

which, upon adding 2 (2—176)2 to both sides, becomes

2o (Y e L (Y (LY
2 2% Yoy k) T\

or

S ARSI
2% Y7o ) T

This is the equation of a circle of radius centered about the point (2—176,2—176) Noting that the

1 1
2k 2k

-1
V2[k|

distance of the point ( ) from the origin is precisely we can conclude that equipotential

21>’
surfaces are circles that always contain the origin (0,0), and whose their centers will lie along the line
T=y.

The flow lines of the gradient field F = —VV will always be anti-parallel to VV which will always
be perpendicular to the equipotential surfaces (this we know from Section 2.5). Thus, to sketch the
vector field F we can sketch the equipotential surfaces and then draw vectors that are perpendicular
to the equipotential surfaces.
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4.3.5. Show that o(t) = (th,ln 2], l/t) for £ # 0 is a flow line of the velocity vector field F(z,y,2) =
(230,,2, —z2).

o Well,
do, — 922 — 95 (t) = I i
dt() = e —Uz()_ z(a())
%(t) = %:Uz(t):Fy (0(t))
de = — 5 =— (00 = F.(o(t))
Thus

and so o(t) is a flow line of F.

Section 4.4
4.4,1. Compute the curl, V X F, of each of the following vector fields.
(a) F(z,y,2) = zi+yj + 2k

e We have

VxF =

Oy 927 92  ox’ Oxr Oy
= (0—0,0—0,0—0)
= (0,0,0)

<aa oF, dF, OF, OF, ag)

1

(b) F(z,y,2) =yzi+x2j + 2yk



o We have
oF, O0F, 0F, OF, OF, oF,
VxF = <———y —_— - —= —y——>

(¢) F(z,y,2) = (:):2 +y? z) (31 + 4j + 5K)

UxF — QFZ_%76FE_6FZ76F?/_aF;IT
oy 0z 0z or ’ Ox oy
= (10y — 82,62 — 10z, 8z — 6y)

4.4.2. Compute the divergence of each of the vector fields in Exercise 1.

(a)

V-F = V- (z,4,72)
1%} 1%} 1%}
= %($)+a—y(y)+a(z)
1+1+1
3
(b)
[ ]
V-F = V-(yz,xz,2y)
1%} 1%} 1%}
= %(yz)ﬂLa—y(m)ﬂL@(ﬂcy)
= 040+0
0
(c)
[ ]
V-F = V- (327 +3y>+32% 42® + 4y® + 427 52% + 5y® + 527)
9 2 2 2 9 2 2 2 9 2 2 2
= %(395 + 3y —l—3z)—|—a—y(4x + 4y —l—4z)—|—a(5x + 5y% + 527)
= 6x+8y+ 10z

4.4.3. Let F(z,y,2) = 32%yi + (¢ +4?) J.

(a) Verify that V x F = 0.



VxF =

Oy 0z’ Oz or ' ox oy
(0—0,0—0,3z* — 327)
= (0,0,0)

<an oF, dF, OF, OF, aFm>

(b) Find a function f such that F = V.

e We need to find a function f: R®> — R such that
of

= 322
ox vy
of 3, 3
By = x4y
of
-~ -0
oz

Now the most general function f of x,y, 2 satisfying the first equation in (B1) will be of the form

flz,y,2)= /3x2y dr +hi(y,2) = 3y + hi(y, 2) (B2)

Here hy(y, #) is an arbitrary function of ¥ and z.
The most general function satisfying the second equation in (B2) will be of the form

1
flz,y,2) = / (ZL’3 +y3) dy + ho(z, 2) = 2y + Zy4 + ha(z, 2) B3

where hg(x, 2) is an arbitrary function of z and z.
The most general function satisfying the third equation (B3) will be of the form

flz,y,2) = /O~dz—|—h3(x,y) = hs(x,y) . (B4)

Now the function f that we seek must satisfy (B2), (B3), and (B4) simultaneously. Equation (B2)
tells us that the x dependence of f lies solely in a term of the form z%y; equation (B3) tells us that
the y dependence of f lies solely in the sum of two terms 3y + iy‘*; and equation (B4) tells us that
f does not depend at all on 2. We can thus conclude that any function of the form

1
f(z,y,2) =2y + iy4+0

will be a solution of Vf = F.

(¢) Is it true that for a vector field F such a function can exist only if V x F = 07
e Suppose F =V f = (Qi of Qﬁ). Then

Oz dy’ Oz
vm;:(iaf 0 0f d9f daf d af_iaf>

oy 9z 020y 9z0r Oxd2 dxdy Oyodx
Now by Theorem 15 (Section 2.6), if f is of class C2, then
_0of oof _oof o09f_ 909f 00of
Qydz 020y 0Oz20r Oxrdz Oxrdy Oydx
We conclude that if V x F # 0, there can be no function of class C? such that F = Vf.

4.4.4. Show that F =y (cos(z)) i+ x (sin(y)) j is not a gradient field.



e Suppose that F = Vf. Then
of

2w = Y cos(x)
of :
W zsin(y)

Each of the two functions on the right hand side are perfectly continuous, and moreover, their partial
derivatives exist and are continuos for all  and y. Therefore, f is at least of class C?. But then, by
Theorem 15 of Section 2.6, we must have

oof _00f
dr 8y Oy oz
But
o of . 0 of
9y 01 cos(z) # sin(x) = % 9y

We conclude that F can not be a gradient field.

Section 4.5

4.5,1. Suppose V-F = 0 and V-G = 0. Which of the following vector fields necessarily have zero
divergence?

(a) F+ G

e By Identity 5 on page 283 we have
V- (F+G)=V-F+V-G=0+0=0

b)Fx G
e By Identity 9 on page 283 we have
V- (FxG)=G-(VxF)-F - (VxG)

The expression of the right hand side does not necessarily vanish (even if 0 = V-F = V- G). For
example, if

F = (—y,z,0)
G = (0,0,1)
Then
0=V-F=V-G
and
V(FxG) = G- (VxF)-F-(VxG)
= (0,0,1)-(0,0,2) — (—y,z,0)-(0,0,0)
2

(¢) (F-G)F
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e By Identities 8 and 7 on page 283 we have

V-(F-G)F) = (F-G)(V-F)+F -V(F-G)

(F-G)(V-F)
+F-(F-V)G+(G-V)F+F x (VxG)+G x (VxF))

0+F-((F-V)G+(G-V)F+F x (VxG)+G x (VxF))

The expression of the right hand side does not necessarily vanish (even if 0=V -F=V - G).

4.5.2. Prove the following identities.

@) V(F-G)=(F-V)G+(G-V)F+Fx (VXG)+ G x (VxF)
e By virtue of the product rule the left hand side is equivalent to
LHS =

N
(5

9
iGE

) (F,G, + F,G, + F.G,)

. 0G, | OF, oG,
v or T ox vt vy Yo

aG oF, oG,  OF,
Y'q, + F, el

z+F

9z 0z Y 9z +6zG'Z+FZ 0z

oGy | Oy ¢, aGy OF, an>k

f .
(e

On the other hand,

(F-V)G = <F F—+FZ—Z> (Ga, Gy, G)
d

0 0 0
G-V)F = G,—+G,—+G,— | (F,, F,, F,

B G%—I— 6FI+ oF,\ .
o T Oz Y oy ? 9z !

+<G o 4,20 aF Ga—i>1

ox

oF 6F oF
Go—= £ — |k
+ < ox Yoy oz )




< (VXG) = (Fy F, F,)x <36§z _ 66Gzy766G; ~ aa(j aa(iy - 6@?)
= <Fyaac;y _ FyaaC;z P aaCiz +an§j>i
+<FI66G;_FI6$_Fyaaiz+FyaaGZy>k

Gx(VxF) = (G;,Gy,G,) x

Ay 9z’ Oz oxr ’ Ox Ay
OF; OF, orF, oF
<G v _gq —_Gz—+GZ—Z>i

) <an oF, dF, OF, OF, an>

Y oz Y oy oz ox

OF, OF, OFy \ .
+< “ oy -G 0z GE_FGI 6y>‘]

oF, oF oF, OF,

e — Gp—= — +G,— |k
+< 0z ox Y oy y@z)

And so the right hand side of (a) is

RHS = (F-V)G+(G-V)F+F x(VxG)+G x(VxF)

= <F‘”aa%+Fyaa(;m+FZ66G;+G‘”%+G?/63—?+GZ%+F?/%
_FyaaGy‘”—anaGZ‘”+an§CZ+Gyaa}3—Gyaa};‘”—Gzaa};‘”+Gzaa};j>i
+<an§Cy+FyaaC;y+Fa§ + G, aaiJrG aaF aaF aa(;z
—anaGZy—FaaGy+Faai‘” zaa}; G%—Z—Gm%+Gmaa—];‘”>j
(Fmaachz+Fyaa§Z+anaG + G, F+G F+Gz%+ IaaG;
_Fmﬁgcz_FyﬁaC;z+Fy3§ +G az GI% GyaaF Gyaa—};>k

_ <%Gm anaG 6FyG aaGy aan>
+<aa};G + aai aa}; Gy+Fyaa—Gy+ ayz 2 zaaC;Z>j

which is equivalent to the left hand side of identity (a).

D) V- FxG) =G (VxF)—F-(VxG)

11
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o We have

So

G- (V

(¢) V< (fF)

o a 0
V- (FxG) = V. —)-(r,Gd,-FG, F.G, - F,G, F,G,—F,G
( X ) <8x’8y’8z> (y z 2 Ty, L'z z Tz, LTy Y ;r)
OF, o0Gq, OF, oG,
= G,— —F,—
ox Y ox Y oz ox
n oG, _Gz@ —anG'Z
ay ay oy oy
oF, oG, oF, oG
-G,—% - F, z
+ Y 9z 9z oz Y 9z
_ or, O0F, 0F, O0F, 0F, OF,
G- (VxF) = (G:Gy, ) <6y_ 9z’ 92  dxr’ ox 6y>
oF, OF, OF, OF, OF, oF,
= Geg = CGeg  + G-~ Gy o+ G b =Gy
oG oG, oG oG, oG oG
F-(VxG) = (F,F,F £ _ Y L _ £ v _ z
(VxG) (I’y’z)x<6y 9z ' 9z or ’ Ox 6y>
o0Gq, oG, oG, oa, oG, oG,
= F - F, r, —F, F, - F
T oy oz s 0z Y oz + ox “ oy
_ oF, OF, OF, OF, OF, oF,
xF)—F-(VxG) = G‘”ay —Gmaz + Gy 9% _Gyax +GZ83: _Gzay
oG, oG, oG, oG, oG, oG,
—F, ay + F, 5 — Fy s + By o - F, 7 + F, By
OF, o0Gq, oF, oG,
_Ga ya G T
8G
_GZ% _FIaGZ
0@/ oy dy y
OF, oG, OF, oG,
e vy e E g,

=f(VxF)+VfxF




o We have

X(fF;rva%sz) - < f+f yg—i— aa—FZ>i
+( af+f e e IE
ox T
af af F,
@Wf__%y )

Fy
Ay oz Oz ox ' Oz y )
+((Vh), Fo = (V). )1
+((V)), Fe = (Vf), F2)]

+ ((VF), Fy = (V) 1)

_ <an _OF, 9F, OF, OF,

= f(VXF)+VfxF

4.5.3. Let F = (2:)5,22, 1,y3zx), G= (x2,y2, z2), and f = 2%y. Compute the following quantities.

(a) Vf
Vf= (2xy,x2,0)

(b) VxF

VXF = (3y2zx,4xz — ygz,O)
|
(c) (F-V)G

(F-V)G = <2xz % + g —|—y3zx%> . (xQ,yQ,zQ)

= (4272%,2y,2y°2"x)

(d) F-(Vf)
F-(Vf) = (2xz2,1,y3zx) . (2:ch,x2,0)
= 4x2yz2—|—x2

(e) FxVf

F > (Vf)

(2xz2,1,y3zx) X (2xy,x2,0)
= (—y?’zx3, 2tz 20322 — 2:ch)
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4.5.4. Let F be a general vector field. Does V x F have to be perpendicular to F.

e No, consider the vector field
F(z,y,2) = (-y,z,1)
We have
VxF=(0-0,0-0,1-(-1)) =(0,0,2)
So,
F-(VxF)=(-y,z,1)-(0,0,2) =2#0
Thus, V x F is not perpendicular to F.



