
LECTURE 24

The Integral Theorems of Vector Analysis

1. The Fundamental Theorem of Calculus

Theorem 24.1. Suppose f is a function that’s differentiable on the interval [a, b]. Then

∫
b

a

df

dx
dx = f(b) − f(a)

As we saw in Chapter 7, this theorem has the following generalization to line integrals over paths.

Theorem 24.2. Suppose f : R3
→ R is a function that differentiable at every point along the path σ :

[a, b]→ R
3. Then ∫

σ

∇f · ds = f (σ(b))− f (σ(a))

2. Green’s and Stokes’Theorem

Theorem 24.3. (Green’s Theorem.) Let D ⊂ R
2 be any region of the plane that is both Type I and

TypeII and let ∂D denote it boundary (oriented counter-clockwise). If F = (Fx, Fy,0) is a C
1 vector field

on D (regarded now as a surface in R3), then∫
D

(∇×F)
z
dA =

∫
∂D

F · ds

Theorem 24.4. (Stokes’ Theorem.) Let S be an oriented surface defined by a one-to-one parameteriza-
tion Φ : D ⊂ R

2
→ S ⊂ R

3. Let ∂S denote the oriented boundary of S and let F be a C1 vector field on

S. Then ∫
S

(∇×F)
z
· dS

∫
∂S

F · ds

3. Gauss’ Theorem

Theorem 24.5. Let W be an elementary region in R3, and let ∂W denote the oriented closed surface that

bounds W . Then if F is any smooth vector field on W∫
W

(∇ ·F) dV =

∫
∂W

F · dS

4. The Fundamental Idea

Remark 24.6. Note that each of these theorems can be thought of as relating the integral of a “derivative”
of a function over a region to a sum over the values of the function on the boundary of that region.
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5. Application to Maxwell’s Equations

Recall the differential form of Maxwell’s Equations

∇ ·E = 1
4πεo

ρ(x) (Gauss’ Law)

∇ ·B = 0 (Gauss’ Law for Magnetic Field)
∇×E = −

∂B

∂t
(Faraday’s Law)

∇×B = µoεo
∂E

∂t
+ µoj(x) (Ampere’s Law)

If we integrate the differential form of Gauss’ Law over a volume W then Gauss’ Theorem yields the integral
form of Gauss’s Law:

∫
∂W

E · dS =

∫
W

(∇ ·E) dV

=

∫
W

1

4πεo
ρ(x)dV

=
Q

4πεo

Similarly, integrating the divergence of the magnetic field over a volume W yields

∫
∂W

B · dS =

∫
W

(∇ ·B) dV

=

∫
∂W

0dV

= 0

which is the integral form of Gauss’ Law for Magnetic Fields.

If we integrate the differential form of Faraday’s Law over a surface S we obtain from Stokes’ Theorem

∫
∂S

E · ds =

∫
S

(∇×E) · dS

=

∫
S

∂B

∂t
· dS

= −
∂

∂t

∫
S

B · dS

which is the integral form of Faraday’s Law.

Similarly if we integrate the differential form of Ampere’s Law over a surface S we obtain from Stokes’
Theorem

∫
∂S

B · ds =

∫
S

(∇×B) · dS

=

∫
S

(
µoεo

∂E

∂t
+ µoj(x)

)
· dS

= µoεo
∂

∂t

∫
S

E · dS+ µoI

which is the integral form of Faraday’s Law.
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We thus arrive at the following integral formulation of Maxwell’s Equations∫
∂W

E · dS =
Q

4πεo∫
∂W

B · dS = 0

∫
∂S

E · ds = −

∂

∂t

∫
S

B · dS

∫
∂S

B · ds = µoεo
∂

∂t

∫
S

E · dS+ µoI


