LECTURE 24

The Integral Theorems of Vector Analysis

1. The Fundamental Theorem of Calculus

THEOREM 24.1. Suppose f is a function that's differentiable on the interval [a,b]. Then

$$\int_{a}^{b} \frac{df}{dx} dx = f(b) - f(a)$$

As we saw in Chapter 7, this theorem has the following generalization to line integrals over paths.

THEOREM 24.2. Suppose $f : \mathbb{R}^3 \to \mathbb{R}$ is a function that differentiable at every point along the path $\sigma : [a,b] \to \mathbb{R}^3$. Then

$$\int_{\sigma} \nabla f \cdot d\mathbf{s} = f(\sigma(b)) - f(\sigma(a))$$

2. Green's and Stokes'Theorem

THEOREM 24.3. (Green's Theorem.) Let $D \subset \mathbb{R}^2$ be any region of the plane that is both Type I and TypeII and let ∂D denote it boundary (oriented counter-clockwise). If $\mathbf{F} = (F_x, F_y, 0)$ is a C^1 vector field on D (regarded now as a surface in \mathbb{R}^3), then

$$\int_{D} \left(\nabla \times \mathbf{F} \right)_{z} dA = \int_{\partial D} \mathbf{F} \cdot d\mathbf{s}$$

THEOREM 24.4. (Stokes' Theorem.) Let S be an oriented surface defined by a one-to-one parameterization $\Phi: D \subset \mathbb{R}^2 \to S \subset \mathbb{R}^3$. Let ∂S denote the oriented boundary of S and let \mathbf{F} be a C_1 vector field on S. Then

$$\int_{S} \left(\nabla \times \mathbf{F} \right)_{z} \cdot d\mathbf{S} \int_{\partial S} \mathbf{F} \cdot d\mathbf{s}$$

3. Gauss' Theorem

THEOREM 24.5. Let W be an elementary region in \mathbb{R}^3 , and let ∂W denote the oriented closed surface that bounds W. Then if **F** is any smooth vector field on W

$$\int_{W} \left(\nabla \cdot \mathbf{F} \right) dV = \int_{\partial W} \mathbf{F} \cdot d\mathbf{S}$$

4. The Fundamental Idea

REMARK 24.6. Note that each of these theorems can be thought of as relating the integral of a "derivative" of a function over a region to a sum over the values of the function on the boundary of that region.

5. Application to Maxwell's Equations

Recall the differential form of Maxwell's Equations

$ abla \cdot \mathbf{E} = \frac{1}{4\pi\varepsilon_o}\rho(\mathbf{x})$	(Gauss' Law)
$\nabla \cdot \mathbf{B} = 0$	(Gauss' Law for Magnetic Field)
$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$	(Faraday's Law)
$\nabla \times \mathbf{B} = \mu_o \varepsilon_o \frac{\partial \mathbf{E}}{\partial t} + \mu_o \mathbf{j}(\mathbf{x})$	(Ampere's Law)

If we integrate the differential form of Gauss' Law over a volume W then Gauss' Theorem yields the integral form of Gauss's Law:

$$\int_{\partial W} \mathbf{E} \cdot d\mathbf{S} = \int_{W} (\nabla \cdot \mathbf{E}) \, dV$$
$$= \int_{W} \frac{1}{4\pi\varepsilon_o} \rho(\mathbf{x}) dV$$
$$= \frac{Q}{4\pi\varepsilon_o}$$

Similarly, integrating the divergence of the magnetic field over a volume W yields

$$\int_{\partial W} \mathbf{B} \cdot d\mathbf{S} = \int_{W} (\nabla \cdot \mathbf{B}) \, dV$$
$$= \int_{\partial W} 0 \, dV$$
$$= 0$$

which is the integral form of Gauss' Law for Magnetic Fields.

If we integrate the differential form of Faraday's Law over a surface S we obtain from Stokes' Theorem

$$\int_{\partial S} \mathbf{E} \cdot d\mathbf{s} = \int_{S} (\nabla \times \mathbf{E}) \cdot d\mathbf{S}$$
$$= \int_{S} \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{S}$$
$$= -\frac{\partial}{\partial t} \int_{S} \mathbf{B} \cdot d\mathbf{S}$$

which is the integral form of Faraday's Law.

Similarly if we integrate the differential form of Ampere's Law over a surface S we obtain from Stokes' Theorem

$$\int_{\partial S} \mathbf{B} \cdot d\mathbf{s} = \int_{S} (\nabla \times \mathbf{B}) \cdot d\mathbf{S}$$
$$= \int_{S} \left(\mu_{o} \varepsilon_{o} \frac{\partial \mathbf{E}}{\partial t} + \mu_{o} \mathbf{j}(\mathbf{x}) \right) \cdot d\mathbf{S}$$
$$= \mu_{o} \varepsilon_{o} \frac{\partial}{\partial t} \int_{S} \mathbf{E} \cdot d\mathbf{S} + \mu_{o} I$$

which is the integral form of Faraday's Law.

We thus arrive at the following integral formulation of Maxwell's Equations

$$\int_{\partial W} \mathbf{E} \cdot d\mathbf{S} = \frac{Q}{4\pi\varepsilon_o}$$
$$\int_{\partial W} \mathbf{B} \cdot d\mathbf{S} = 0$$
$$\int_{\partial S} \mathbf{E} \cdot d\mathbf{s} = -\frac{\partial}{\partial t} \int_S \mathbf{B} \cdot d\mathbf{S}$$
$$\int_{\partial S} \mathbf{B} \cdot d\mathbf{s} = \mu_o \varepsilon_o \frac{\partial}{\partial t} \int_S \mathbf{E} \cdot d\mathbf{S} + \mu_o I$$