
LECTURE 23

Integrals over Surfaces

1. Parameterized Surfaces

Definition 23.1. A parameterized surface is a continuous 1:1 map Φ : D ⊂ R
2 → R

n
. The surface

S corresponding to Φ is the image of the domain D in the target space R
n
:

S = {x ∈ Rn | x = Φ(u, v) for some (u, v) ∈ D}

If we write

Φ(u, v) = (x1(u, v), x2(u, v), . . . , xn(u, v)) ∈ R
n

and the component functions xi(u, v) are all of class C1, then we say that S is a surface of class C1.

Example 23.2. Graphs of functions from f : R2
→ R.

Define

Φ(u, v) : (u, v)→ (u, v, f(u, v))

Then Φ will be a parameterized surface. The corresponding surface is just the graph of f .

Example 23.3. The Sphere

Take

Φ(u, v) : [0, 2π]× [0, π]→ R
3

: Φ(u, v) = (cos(u) sin(v), sin(u) sin(v), cos(v))

Then the corresponding surface will be a sphere of radius 1 centered about the origin.

2. Tangent Plane to a Surface

Suppose that Φ : D→ R
3 is a parameterized surface that is differentiable at the point (uo, vo) ∈ D. Keeping

v fixed at vo, we obtain a path

σ1 : R→ R
3

: σ1(t) = Φ(uo + t, vo)

The tangent vector to this path at the point (u
o
, v

o
) is just

Tu =
dσ1

dt
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Similarly, we can keep u fixed at uo and construct a curve be varing v:

σ2(t) = Φ(uo, vo + t)

The tangent vector to the curve σ2 at the point (uo, vo) will be

Tv =
dσ2

dt
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=
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∂Φx
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+
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Now since the paths σ1 and σ2 both lie entirely within the surface S, their tangent vectors should also lie

within S; or at least lie within the plane tangent to S at the point Φ (uo, vo). Indeed, we can use these

tangent vectors to prescribe the plane tangent to S at the point Φ(uo, vo). Set

n = Tu ×Tv

This vector should be perpendicular to every line in the tangent plane. This observation motivates the

following definition.

Definition 23.4. Let Φ : D→ R
3 be a parameterized surface that is differentiable at the point (uo, vo) ∈ D.

The plane tangent to the surface S = Φ(D) at the point Φ (u, v) is the plane defined by

TS(u
o
,v
o
) =

{
x ∈ R

3
| (x− Φ(uo, vo)) · (Tu ×Tv) = 0

}

3. Surface Integrals of Scalar Functions

Definition 23.5. Let f(x) be a real-valued function on R
3

and let Φ : D ⊂ R2
→ R

3
be a parameterized

surface. The integral of f over the surface S = Φ(D) is the integral∫
S

fdS ≡

∫
D

f (Φ(u, v)) ‖Tu ×Tv‖ dudv

Remark 23.6. The area of a surface is just the integral∫
S

dS ≡

∫
D

‖Tu ×Tv‖ dudv

Example 23.7. Let S be the upper hemisphere of the unit sphere in R
3
.

S =
{
(x, y, z) ∈ R3

| x2 + y2 + z2 = 1 , z ≥ 0
}

Calculate
∫

S

zdS

• We can realize this sphere as the image of the following parameterized surface

Φ : [0,2π]× [0,
π

2
]→ R

3 , Φ(θ, φ) = (cos(θ) sin(φ), sin(θ) sin(φ), cos(φ))

We then have

Tθ = (− sin(θ) sin(φ), cos(θ) sin(φ),0)

Tφ = (cos(θ) cos(φ), sin(θ) cos(φ),− sin(φ))

and so

Tθ ×Tφ =
(
− cos(θ) sin

2
(φ) − 0,0− sin(θ) sin

2
(φ),− sin

2
(θ) sin(φ) cos(φ)− cos

2
(θ) sin(φ) cos(φ)

)

=
(
− cos(θ) sin(φ), sin(θ) sin

2
(φ),− sin(φ) cos(φ)

)

and

‖Tθ ×Tφ‖
2
= cos

2
(θ) sin

4
(φ) + sin

2
(θ) sin

4
(φ) + sin

2
(φ) cos

2
(φ)

= sin
2
(φ) (sin

2
(φ) + cos

2
(φ))

= sin
2
(φ)

⇒ ‖Tθ ×Tφ‖ = |sin(φ)|
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Hence,

∫

S

zdS =

∫ 2π

0

∫ π/2

0

z(θ,φ) ‖Tθ ×Tφ‖dφdθ

=

∫ 2π

0

∫ π/2

0

cos (φ) sin(φ) dφ dθ

=

∫
2π

0

(∫
1

0

udu

)
dθ

=

∫
2π

0

1

2
dθ

= π

(In the third line we employed the substitution u = sin(φ).)

4. Surface Integrals of Vector-Valued Functions

Definition 23.8. Let F be a vector field on R
3
and let Φ : D→ R

3
be a parameterized surface. The surface

integral of F over the surface S = Φ(D) is the integral∫
Φ

F · dS ≡

∫
D

F (Φ(u, v)) · (Tu ×Tv) du dv

5. Orientable Surfaces

When one computes the work done in moving an object along a path σ : [a, b]→ R
3, it is important that σ

moves in the correct direction; in particular

σ(a) = the initial point

σ(b) = the ending point

Otherwise, the work integral

W =

∫
σ

F · ds

will yield the negative of the correct result. Thus, the notion of a physical trajectory is more than just

a collection of points in space, it also should include a certain orientation indicating which direction the

object is moving.

The situation is similar for surfaces; but here the notion of orientation has to do with the ambiguity in the

sign of the normal vector

n = Tu ×Tv = −Tv ×Tu


