LECTURE 22

Integrals over Curves

Recall that the arc length of a parameterized curve $\sigma:[a,b]\to \mathbb{R}^n$ is given by

$$L = \int_{a}^{b} \left\| \frac{d\sigma}{dt} \right\| dt$$

This integral should be thought of as the limit of a Riemann sum of the form

$$\sum L_i = \sum_i \left\| \frac{d\sigma}{dt}(t_i) \right\| \Delta t$$

where the L_i is the length of the curve segment between $\sigma(t_i)$ and $\sigma(t_i + \Delta t)$.

It is sometimes useful to consider "weighted" Riemann sums of the form

$$\sum f(\sigma(t_i)) L_i = \sum_i f(\sigma(t_i)) \left\| \frac{d\sigma}{dt}(t_i) \right\| \Delta t$$

In which case we are lead to consider integrals of the form

$$\int_{a}^{b} f\left(\sigma(t)\right) \left\| \frac{d\sigma}{dt} \right\| dt$$

Such integrals are called **path integrals** and are commonly presented via the notation

$$\int_C f ds$$

where $C = \{\sigma(t) \in \mathbb{R}^n \mid t \in [a, b]\}$ denotes the corresponding curve.

For example, if we wished to calculate the moment of inertia about the y-axis of a wire winding through the xy-plane we might consider a Riemann sum of the form

$$\sum_{i} x\left(\sigma(t)\right) \rho \left\| \frac{d\sigma}{dt}(t_{i}) \right\| \Delta t$$

Here ρ is the density of the wire, so that

$$\rho \left\| \frac{d\sigma}{dt}(t_i) \right\| \Delta t$$

is interpretable as the mass of the wire lying between $\sigma(t_i)$ and $\sigma(t_i + \Delta t)$; and $x(\sigma(t))$ is the distance of that segment from the *y*-axis. Passing from the Riemann sum to an integral expression in the usual fashion yields an integral for the form

$$\int_{a}^{b} x\left(\sigma(t)\right) \rho \left\| \frac{d\sigma}{dt}(t_{i}) \right\| dt \equiv \int_{C} x ds$$

0.1. Line Integrals. Another kind of integral that arises frequently in applications is the so-called **line integral**. This is defined as follows.

DEFINITION 22.1. Let **F** be a vector field on \mathbb{R}^n and let $\sigma : [a,b] \to \mathbb{R}^n$ be a parameterized path in \mathbb{R}^n . The **line integral** of **F** along the corresponding curve $C = \{\sigma(t) \in \mathbb{R}^n \mid t \in [a,b]\}$ is the integral

$$\int_{C} \mathbf{F} \cdot d\mathbf{s} \equiv \int_{a}^{b} \mathbf{F} \left(\sigma(t) \right) \cdot \frac{d\sigma}{dt} dt$$

EXAMPLE 22.2. Let $\mathbf{F}(\mathbf{x})$ be a vector field describing the total force acting on a particle at position \mathbf{x} . The work done in moving the particle a small displacement $\Delta \mathbf{x}$ is given by

$$\Delta W = \mathbf{F} \cdot \Delta \mathbf{x}$$

If we seek to estimate the work done in moving a particle along a path $\sigma : [a, b] \to \mathbb{R}^n$ we are then led to a Riemann sum of the form

$$W = \sum \Delta W = \sum \mathbf{F} (\mathbf{x}_i) \cdot \Delta \mathbf{x} = \sum \mathbf{F} (\mathbf{x}_i) \cdot \frac{d\sigma}{dt} \Delta t$$

and hence to an integral of the form

$$\int_{C} \mathbf{F} \cdot d\mathbf{s} \equiv \int_{a}^{b} \mathbf{F} \left(\sigma(t) \right) \cdot \frac{d\sigma}{dt} dt$$

0.2. Properties of Path Integrals and Line Integrals.

DEFINITION 22.3. Let h(t) be a differentiable real-valued function mapping an interval [c,d] on the real line to another interval [a,b]. Assume moreover that h(t) is 1:1 and increasing. Let $\sigma : [a,b] \to \mathbb{R}^n$ be a piecewise differentiable path. Then the path

$$\gamma = \sigma \circ h : [c,d] \to \mathbb{R}^n$$

is called a **reparameterization** of σ .

THEOREM 22.4. If $\gamma: [c,d] \to \mathbb{R}^n$ is a reparameterization of a path $\sigma: [a,b] \to \mathbb{R}^n$ then

1. For any function $f : \mathbb{R}^n \to \mathbb{R}$

$$\int_{\sigma} f ds = \int_{\gamma} f ds$$

2. For any vector field $\mathbf{F} : \mathbb{R}^n \to \mathbb{R}^n A$ vector field \mathbf{F} is said to be conservative if there exists a function $f : \mathbb{R}^n \to \mathbb{R}$ such that

$$\int_{\sigma} \mathbf{F} \cdot d\mathbf{s} = \int_{\gamma} \mathbf{F} \cdot d\mathbf{s}$$

Definition 22.5.

$$\mathbf{F} = \nabla f$$

THEOREM 22.6. Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable and that $\sigma : [a, b] \to \mathbb{R}^n$ be a piecewise differentiable path. Then

$$\int_{\sigma} \nabla f \cdot d\mathbf{s} = f(\sigma(b)) - f(\sigma(a))$$

Proof. We have

$$\int_{\sigma} \nabla f \cdot d\mathbf{s} \equiv \int_{a}^{b} \nabla f \cdot \frac{d\sigma}{dt} dt$$
$$= \int_{a}^{b} \frac{d}{dt} (f \circ \sigma) dt \quad \text{(by the chain rule)}$$
$$= f (\sigma(b)) - f (\sigma(a)) \quad \text{(by the Fundamental Theorem of Calculus)}$$

DEFINITION 22.7. A vector field $\mathbf{F} : \mathbb{R}^n \to \mathbb{R}^n$ is called **conservative** if $\mathbf{F} = \nabla f$ for some function $f : \mathbb{R}^n \to \mathbb{R}$.

REMARK 22.8. When a force field is conservative, the work done in moving a body from one point to another depends only on the initial and final positions; independent of the path taken. For, in this case,

$$W = \int_{\sigma} \mathbf{F} \cdot d\mathbf{s} = \int_{\sigma} \nabla f \cdot d\mathbf{s} = f(\sigma(b)) - f(\sigma(a))$$