LECTURE 13

Vector Fields

DEFINTTION 13.1. A wvector field on R™ is a funcltion F : A C R™ — R"™ that assignes to each point x in
its domain A an n-dimensional vector F(x).

EXAMPLE 13.2. The gradient Vf of a function f: R™ — R is a vector field. For
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is always an n-dimensional vector.

ExXaMPLE 13.3. Suppose we define the gravitational field G(x) at a point x € R3 as the acceleration a that
a particle of unit mass experiences when released from the point x. A gravitational field is then a function
which assigns a 3-dimensional vector to each point x € R3. A gravitational field is thus a vector field.

ExXAMPLE 13.4. Similarly, one can define the electric field E(x) at the point x € R? in terms of the accel-
eration that a charged particle experiences when released from the point x. The electric field is also a
vector field.

EXaMPLE 13.5. Let V(x) be the vector indicating the direction and speed at which a fluid is flowing at a
point x € R%. This is also an example of a vector field.

This last example is particularly important - because it is the basis for much of our intuitive understanding
of vector fields.

DEFINITION 13.6. IfF is a vector field, then a flow line of F is an path c(t) such that
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REMARK 13.7. If V(x) is the vector field corresponding to the flow of a fluid, then a flow line of V is
precisely the trajectory that a small particle would travel if dropped in the fluid.

ExaMPLE 13.8. Show that
c(t) = (cos(t),sin(t),t)
is a flow line for the vector field

F(z,y,2) = (—y,z,1)

e We have
dc .
p (t) = (—sin(?), cos(t), 1)
and
F (c(t)) = F(cos(t),sin(t),1) = (—cos(t),sin(t), 1)
Thus,

and so c(?) is a flow line for F.
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ExaMPLE 13.9. Sketch the flow lines for the vector field F(z,y) = (%, —%)

e A flow line is going to be a path o(f) such that
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do ) x(t)
0 = o) = (S -5
de _y(t)
dil 2
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di 2

This is a set of coupled differential equations. To solve this system we can differerentiate the first
equation, and then use the second equation on the right hand side, to get a second order ordinary
differerential equation for o :
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This is a second order linear differential equation with constant coefficients.

of this equation is
(t) — E i E
z(l) = cq cos 5 + co sin 5

To find oy (t) we can now use (13.1) to find
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The general solution

y(t)
Note that
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So every point on a such a flow line lies on a circle of radius R = \/c? + c3.



