
LECTURE 12

Arc Length

Suppose σ : [a, b]→ R
2 is a path in the xy-plane. How does one compute the length of the corresponding

curve?

Well suppose we break the interval [a, b] up into n subintervals of length

∆t =
b− 1

n

It we make ∆t small enough (by making n large enough), then the curve between σ(ti) and σ(ti + ∆t) will

be almost a straight line. So if we define di to be the distance between the points σ(ti) and σ(ti + ∆t) in

the plane, then

di = ‖σ(ti + ∆t)− σ(ti)‖

=

√
(σx(ti + ∆t)− σx(ti))

2
+ (σy(ti + ∆t)− σy(ti))

2

Now

σx(ti + ∆t) ≈ σx(ti) +
dσx

dt
(ti)∆t

σy(ti + ∆t) ≈ σy(ti) +
dσy

dt
(ti)∆t

so

di ≈

√(
dσx

dt
(ti)∆t

)2
+

(
dσy

dt
(ti)∆t

)2

=

√(
dσx

dt
(ti)

)2
+

(
dσy

dt
(ti)

)2
∆t

=

∥∥∥∥
dσ

dt
(ti)

∥∥∥∥∆t

1
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To estimate the total length of the curve

c =
{
x ∈ R

2
| x = σ(t) , t ∈ [a, b]

}

we simply sum the lengths di of the straight line approximations to curve between σ (ti) and σ(ti+1) =

σ(ti + ∆t).

L ≈

n∑

i=1

‖σ(ti + ∆t)− σ(ti)‖

=

n∑

i=1

di

=

n∑

i=1

∥∥∥∥
dσ

dt
(ti)

∥∥∥∥∆t

Recognizing the right hand sum as a Riemann sum, we can take the limit as ∆t→ 0, n→ ∞ and replace

the summation on the right with a Riemann integral. We thus arrive at the formula

L =

∫
b

a

∥∥∥∥
dσ

dt
(t)

∥∥∥∥ dt

Remark 12.1. There is nothing in the above derivation that is peculiar to curves in the plane. This
formula works just as well for curves in an n-dimensional space. More precisely, if σ : [a, b] → R

n is a
parameterized path in Rn, then the length of the corresponding curve in Rn is precisely

L =

∫
b

a

∥∥∥∥dσ
dt

(t)

∥∥∥∥ dt
It’s just that

∥∥dσ

dt
(t)

∥∥will now be the magnitude of an n-dimensional vector rather than a 2-dimensional
vector.

Example 12.2. Use the arc length formula above to compute the length of the circumference of a circle of
radius r.

• The first thing we need is a parameterization for a circle of radius r. This should be pretty familar;
we take

σ(t) : [0, 2π]→ R
2

: t 	→ (r cos(t), r sin(t))

We then have

dσ

dt
(t) = (−r sin(t), r cos(t))

and ∥∥∥∥
dσ

dt
(t)

∥∥∥∥ =

√
(−r sin(t))

2
+ (r cos(t))

2
=

√
r2
(
sin

2
(t) + cos2(t)

)
=

√
r2 = r

The arc length formula developed above now yields

L =

∫
2π

0

∥∥∥∥
dσ

dt
(t)

∥∥∥∥ dt =

∫
2π

0

rdt = rt

∣∣∣∣
2π

0

= 2πr

Thus, our fancy new-fangled formalism certainly agrees with what we learned in high school.

Theorem 12.3. If σ1 : [a, b]→ R
n
and σ2 : [c, d]→ R

n
are two one-to-one parametric paths parameterizing

the same curve then ∫
d

c

∥∥∥∥dσ2
dt

(t)

∥∥∥∥ dt =

∫
b

a

∥∥∥∥dσ1
dt

(t)

∥∥∥∥ dt

i.e., the arc-length of the curve is independent of the parameterization.
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Proof. Since σ1 and σ2 are two one-to-one paths with the same image curve, by the Theorem 9.3 (in Lecture

9) we have a one-to-one mapping h from [c, d] to [a, b] such that

σ2 = σ1 ◦ h

Note that since h is both continuous and one-to-one, endpoints must map to endpoints; and so either

h(c) = a and h(d) = b; or h(c) = b and h(d) = a. Now by the chain rule

dσ2

dt
(t) = Dσ1|h(t)Dh(t) =

dσ1

dt

∣∣∣∣
h(t)

dh

dt

∣∣∣∣
t

and so ∥∥∥∥dσ2

dt
(t)

∥∥∥∥ =

∥∥∥∥dσ1

dt
(h(t))

dh

dt
(t)

∥∥∥∥ =

∥∥∥∥dσ1

dt
(h(t))

∥∥∥∥
∣∣∣∣dhdt (t)

∣∣∣∣
Thus, ∫

d

c

∥∥∥∥dσ2

dt
(t)

∥∥∥∥ dt =

∫
d

c

∥∥∥∥dσ1

dt
(h(t))

∥∥∥∥
∣∣∣∣dhdt (t)

∣∣∣∣dt
If we now make a change of variable

s = h(t)

ds =
dh

dt
(t)dt = ±

∣∣∣∣dhdt (t)

∣∣∣∣ dt
∫

d

c

∥∥∥∥dσ2dt
(t)

∥∥∥∥ dt =

∫
d

c

∥∥∥∥dσ1dt
(h(t))

∥∥∥∥
∣∣∣∣dhdt (t)

∣∣∣∣ dt = ±

∫
h(d)

h(c)

∥∥∥∥dσ1dt
(s)

∥∥∥∥ ds
Now the ± sign out front on the right hand side is the sign of

dh

dt
which depends on whether or not h(t) is an

increasing or decreasing function. Note that since h is continuous and one-to-one, the sign of
dh

dt
is always

positive or always negative (if
dh

dt
flipped a sign, then h(t) would have to double back on itself). Now if

h(t) is always increasing then c < d implies h(c) < h(d). Since h(c) and h(d) must also be endpoints for

the interval [a, b] we have

dh

dt
> 0 ⇒ h(c) = a , h(d) = b

On the other hand, if h(t) is always decreasing then since c < d, we must have h(c) > h(d). But since h(c)

and h(d) must also be endpoints for the interval [a, b] we must have

dh

dt
< 0 ⇒ h(c) = b , h(d) = a

Thus ∫
d

c

∥∥∥∥dσ2

dt
(t)

∥∥∥∥ dt = ±

∫
h(d)

h(c)

∥∥∥∥dσ1

dt
(s)

∥∥∥∥ ds =

{
+

∫
b

a

∥∥dσ1

dt
(s)

∥∥ ds if
dh

dt
> 0

−

∫
a

b

∥∥dσ1

dt
(s)

∥∥ ds if
dh

dt
< 0

=

∫
b

a

∥∥∥∥dσ1dt (t)

∥∥∥∥ dt


