LECTURE 12

Arc Length

Suppose 0 : [a,b] — R? is a path in the zy-plane. How does one compute the length of the corresponding
curve?

Well suppose we break the interval [a,b] up into n subintervals of length
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It we make Af small enough (by making n large enough), then the curve between o(t;) and o(t; + At) will
be almost a straight line. So if we define d; to be the distance between the points o(¢;) and o(¢; + At) in
the plane, then

di = |lo(t; + At) — o (&) ||
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12. ARC LENGTH 2

To estimate the total length of the curve
c={xeR®|x=0(t) , t€labl}

we simply sum the lengths d; of the straight line approximations to curve between o (¢;) and o({;11) =

o(t; + At).
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Recognizing the right hand sum as a Riemann sum, we can take the limit as At — 0, n — oo and replace
the summation on the right with a Riemann integral. We thus arrive at the formula
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REMARK 12.1. There is nothing in the above derivation that is peculiar to curves in the plane. 'This
formula works just as well for curves in an n-dimensional space. More precisely, if o : [a,b] — R"™ is a
parameterized path in R™, then the length of the corresponding curve in R"™ is precisely

b
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It’s just that | %(t)”will now be the magnitude of an n-dimensional vector rather than a 2-dimensional
vector.
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EXAMPLE 12.2. Use the arc length formula above to compute the length of the circumference of a circle of
radius 7.

e The first thing we need is a parameterization for a circle of radius . This should be pretty familar;

we take
o(t):[0,27] = R? :  ts (rcos(t),rsin(t))
We then have
d
29 1) = (—rsin(t), rcos(t))
dt
and
d
‘ ?(;(t)H = \/(—7“ sin(£))? 4 (r cos(t))? = \/7“2 (sin®(t) + cos?(t)) = Vi2 =7
The arc length formula developed above now yields
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Thus, our fancy new-fangled formalism certainly agrees with what we learned in high school.

THEOREM 12.3. Ifoy : [a,b] — R™ and 09 : [c,d] — R™ are two one-to-one parametric paths parameterizing
the same curve then
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e., the arc-length of the curve is independent of the parameterization.



12. ARC LENGTH 3

Proof. Since o1 and oy are two one-to-one paths with the same image curve, by the Theorem 9.3 (in Lecture
9) we have a one-to-one mapping h from [c, d] to [a,b] such that

o =010h

Note that since h is both continuous and one-to-one, endpoints must map to endpoints; and so either
h(c) = a and h(d) = b; or h(c) = b and h(d) = a. Now by the chain rule
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If we now make a change of variable
s = h(t)
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Now the = sign out front on the right hand side is the sign of ¢ E which depends on whether or not h(¢) is an
increasing or decreasing function. Note that since h is continuous and one-to-one, the sign of % is always
positive or always negative (if dh flipped a sign, then A(t) would have to double back on itself). Now if
h(t) is always increasing then c < d implies h(c) < h(d). Since h(c) and h(d) must also be endpoints for
the interval [a,b] we have

dh
— >0 = h h(d)=1»
s ©=a . A
On the other hand, if h(?) is always decreasing then since ¢ < d, we must have h(c) > h(d). But since h{c)

and h(d) must also be endpoints for the interval [a,b] we must have

dh
<0 = k=0, W) =a
Thus
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