LECTURE 11

Maxima and Minima

Definition 11.1. Let \(f : \mathbb{R}^n \to \mathbb{R} \) be a real-valued function of several variables. A point \(x_o \in \mathbb{R}^n \) is called a **local minimum** of \(f \) if there is a neighborhood \(U \) of \(x_o \) such that

\[
f(x) \geq f(x_o) \quad \text{for all } x \in U.
\]

A point \(x_o \in \mathbb{R}^n \) is called a **local maximum** of \(f \) if there is a neighborhood \(U \) of \(x_o \) such that

\[
f(x) \leq f(x_o) \quad \text{for all } x \in U.
\]

A point \(x_o \in \mathbb{R}^n \) is called a **local extremum** if it is either a local minimum or a local maximum.

Definition 11.2. Let \(f : \mathbb{R}^n \to \mathbb{R} \) be a real-valued function of several variables. A **critical point** of \(f \) is a point \(x_o \) where

\[
\nabla f(x_o) = 0.
\]

If a critical point is not also a local extremum then it is called a **saddle point**.

Theorem 11.3. Suppose \(U \) is an open subset of \(\mathbb{R}^n \), \(f : U \to \mathbb{R} \) is differentiable, and \(x_o \) is a local extremum. Then

\[
\nabla f(x_o) = 0
\]

i.e., \(x_o \) is a critical point of \(f \).

Proof. Suppose \(x_o \) is an extremum of \(f \). Then there exists a neighborhood \(N \) of \(x_o \) such that either

\[
f(x) \geq f(x_o) \quad \text{for all } x \in N
\]

or

\[
f(x) \leq f(x_o) \quad \text{for all } x \in NR.
\]

Let \(\sigma : I \subset \mathbb{R} \to \mathbb{R}^n \) be any smooth path such that \(\sigma(0) = x_o \). Since \(\sigma \) is in particular continuous, there must be a subinterval \(I_N \) of \(I \) containing 0 such that

\[
\sigma(t) \in N \quad \text{for all } t \in I_N.
\]

But then if we define

\[
h(t) = f(\sigma(t))
\]

we see that since \(\sigma(t) \) lies in \(N \) for all \(t \in I_N \), we must have either

\[
h(t) = f(\sigma(t)) \geq f(x_o) = h(0) \quad \text{for all } t \in I_N
\]

or

\[
h(t) = f(\sigma(t)) \leq f(x_o) = h(0) \quad \text{for all } t \in I_N.
\]

Thus, \(t = 0 \) is an extremum for the smooth function \(h(t) \). From Calc. I, we know that if \(h(t) \) is differentiable and has a critical point at \(t = 0 \), then necessarily

\[
0 = \frac{dh}{dt}(0).
\]
Employing the chain rule we get
\[
0 = \frac{df}{dt}(0)
= \nabla f \big|_{\sigma(0)} \cdot \frac{d\sigma}{dt}(0)
= \nabla f (x_0) \cdot \frac{d\sigma}{dt}(0)
\]
Thus, \(\nabla f (x_0) \) must be perpendicular to the tangent vector of \(\sigma \) at \(t = 0 \). But the curve \(\sigma \) is arbitrary (except for the fact that it passes through \(x_0 \)); hence, \(\nabla f (x_0) \) must be perpendicular the tangent vector of every curve through \(x_0 \). But the only vector perpendicular to every other vector is the zero vector. Thus, we must have
\[
\nabla f (x_0) = 0.
\]

This theorem gives a necessary condition for a point \(x_0 \in U \) to be a local extremum for a \(C^2 \) function on \(U \subset \mathbb{R}^n \). It is not sufficient however. To develop a sufficient condition, we shall look a little more closely at the Taylor expansion of a \(C^2 \) function in the neighborhood of a critical point.

In general, for points sufficiently close to \(x_0 \),
\[
f(x) \approx f(x_0) + \nabla f(x_0) \cdot (x - x_0) + \frac{1}{2} (x - x_0)^T \nabla \nabla f(x_0) (x - x_0)
\]
Now if \(x_0 \) is a critical point of \(f \) then \(\nabla f(x_0) = 0 \), so
\[
f(x) \approx f(x_0) + \frac{1}{2} (x - x_0)^T \nabla \nabla f(x_0) (x - x_0).
\]
Thus, to show that, for all points close to \(x_0 \), \(f(x) \) is always greater than \(f(x_0) \) it would suffice to show that
\[
\frac{1}{2} (x - x_0)^T \nabla \nabla f(x_0) (x - x_0) \geq 0 \quad \text{for all } x;
\]
and to show that, for all points close to \(x_0 \), \(f(x) \) is always less than \(f(x_0) \) it would suffice to show that
\[
\frac{1}{2} (x - x_0)^T \nabla \nabla f(x_0) (x - x_0) \leq 0 \quad \text{for all } x.
\]

Definition 11.4. An \(n \times n \) matrix \(A \) is called positive definite if
\[
v^T Av > 0
\]
for any non-zero \(n \)-dimensional column vector \(v \). An \(n \times n \) matrix \(A \) is called negative definite if
\[
v^T Av < 0
\]
for any non-zero \(n \)-dimensional column vector \(v \).

The observation made above can now be phrased more succinctly.

Theorem 11.5. Let \(f : U \subset \mathbb{R}^n \to \mathbb{R} \) be a \(C^2 \) function. If \(x_0 \) is a critical point of \(f \) and the Hessian matrix \(\nabla \nabla f(x_0) \) is positive definite, then \(x_0 \) is a local minimum. If \(x_0 \) is a critical point of \(f \) and the Hessian matrix \(\nabla \nabla f(x_0) \) is negative definite, then \(x_0 \) is a local maximum.

What remains is to develop some useful techniques for detecting when a given matrix is positive or negative definite.

Theorem 11.6. An \(n \times n \) matrix is positive (respectively, negative) definite if and only if all its eigenvalues are positive (respectively, negative).

For the particular case when \(n = 2 \) we have an easier test for positive and negative definiteness.
Lemma 11.7. Let \(A = \begin{pmatrix} a & b \\ b & c \end{pmatrix} \) be a symmetric \(2 \times 2 \) matrix with \(a, b, c \in \mathbb{R} \). Then \(A \) is positive definite if and only if

\[
a > 0 \quad \text{and} \quad ac - b^2 > 0 ,
\]

and \(A \) is negative definite if and only if

\[
a < 0 \quad \text{and} \quad ac - b^2 > 0 .
\]

Proof. Let \(v = (x, y) \) be an arbitrary non-zero vector. Then

\[
v^T Av = (x, y) \begin{pmatrix} a & b \\ b & c \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = (x, y) \begin{pmatrix} ax + by \\ bx + cy \end{pmatrix} = ax^2 + 2bxy + cy^2 = a(x + \frac{b}{a} y)^2 + \left(c - \frac{b^2}{a}\right)y^2
\]

If \(A \) is positive definite, the expression on the right hand side must positive for all choices of \(x \) and \(y \). In particular, it must be positive when \(y = 0 \), which leads to

\[
0 < ax^2
\]

which implies that

\[
a > 0 .
\]

The right hand side must also be positive when \(x = -\frac{b}{a} y \); this leads to

\[
0 < \left(c - \frac{b^2}{a}\right)y^2
\]

which implies

\[
ac - b^2 > 0 .
\]

If \(A \) is negative definite, then the expression on the right hand side of (1) must be negative for all choices of \(x \) and \(y \) (not both zero). Choosing \(y = 0 \) leads to the condition

\[
0 > ax^2
\]

which implies that

\[
a < 0 .
\]

Setting \(x = -\frac{b}{a} y \) leads to the condition

\[
0 < \left(c - \frac{b^2}{a}\right)y^2
\]

Multiplying both sides of this inequality by \(\frac{a}{y^2} \) we get the following condition

\[
ac - b^2 > 0 .
\]

(Because \(a \) must be negative, when we multiply both sides of the inequality by \(\frac{a}{y^2} \) we must also reverse the direction of the inequality.)

We can now employ the above criterion to determine when the Hessian matrix of a function \(f : U \subset \mathbb{R}^2 \rightarrow \mathbb{R} \) is positive or negative definite. Namely,

\[
Hf(x_o) = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2}(x_o) & \frac{\partial^2 f}{\partial x \partial y}(x_o) \\ \frac{\partial^2 f}{\partial x \partial y}(x_o) & \frac{\partial^2 f}{\partial y^2}(x_o) \end{pmatrix}
\]
is positive definite if

\[(i) \quad \left(\frac{\partial^2 f}{\partial x^2} (x_o) \right) \left(\frac{\partial^2 f}{\partial y^2} (x_o) \right) \left(\frac{\partial^2 f}{\partial x \partial y} (x_o) \right)^2 > 0 \]

and negative definite if

\[(i') \quad \left(\frac{\partial^2 f}{\partial x^2} (x_o) \right) \left(\frac{\partial^2 f}{\partial y^2} (x_o) \right) \left(\frac{\partial^2 f}{\partial x \partial y} (x_o) \right)^2 > 0 \]

\[
\quad \frac{\partial^2 f}{\partial x^2} (x_o) < 0.
\]

Let me now summarize the second derivative test for the case when \(n = 2\).

\textbf{Theorem 11.8. (Second Derivative Test).} Let \(f\) be a \(C^2\) function on open subset \(U \subset \mathbb{R}^2\). If \(x_o \in U\) is a critical point of \(f\) and

\[(i) \quad \left(\frac{\partial^2 f}{\partial x^2} (x_o) \right) \left(\frac{\partial^2 f}{\partial y^2} (x_o) \right) \left(\frac{\partial^2 f}{\partial x \partial y} (x_o) \right)^2 > 0 \]

\[(ii) \quad \frac{\partial^2 f}{\partial x^2} (x_o) > 0 \]

then \(x_o\) is a local minimum. If \(x_o \in U\) is a critical point of \(f\) and

\[(i') \quad \left(\frac{\partial^2 f}{\partial x^2} (x_o) \right) \left(\frac{\partial^2 f}{\partial y^2} (x_o) \right) \left(\frac{\partial^2 f}{\partial x \partial y} (x_o) \right)^2 > 0 \]

\[(ii') \quad \frac{\partial^2 f}{\partial x^2} (x_o) < 0 \]

then \(x_o\) is a local maximum.