LECTURE 11

Maxima and Minima

DEFINITION 11.1. Let f : R™ — R be a real-valued function of several variables. A point x, € R™ is called
a local minimum of f if there is a neighborhood U of x, such that

f(x)> f(xo) forallxeU.

A point x, € R™ is called a local maxmum of [ if there is a neighborhood U of x, such that
f(x) < f(x,) forallxeU .

A point x, € R™ is called a local extremum if it is eilher a local minimum or a local mazimum.

DEFINITION 11.2. Let f : R™ — R be a real-valued function of several variables. A eritical point of f is
a point x, where

Vf(x,)=0.
If a critical point is not also a local extremwm then it is called a saddle point.

THEOREM 11.3. Suppose U is an open subset of R™, f : U — R is differentiable, and x,, is a local extremum.
Then

Vi(x,) =0

i.e., X, 18 a critical point of f.

Proof. Suppose X, is an extremum of f. Then there exists a neighborhood IV of x, such that either
fx)> f(x,) , forallxe N
or
fx)< f(x,) , forallxe NR.

Let 0 : I C R — R"™ be any smooth path such that o(0) = x,. Since ¢ is in particular continuous, there
must be a subinterval I of I containing O such that

ot)e N , foralltely.
But then if we define
h(t) = f(o(?))
we see that since o(¢) lies in N for all ¢ € Iy, we must have either
h(t) = f(o(t)) > f(x,) = h(0) , forallte Iy
or
R(t) = f(o(t) < f(x,)=h(0) , foralltely

Thus, { = 0 is an extremum for the smooth function A(t). From Calc. 1, we know that if 2(t) is differentiable
and has a critical point at ¢ = 0, then necessarily
dh
0=—(0
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Employing the chain rule we get
0 = 40
= Vflew)- Z—(Z(O)
g
= Vf(x)-3(0)
Thus, V[ (x,) must be perpendicular to the tangent vector of o at ¢ = 0. But the curve ¢ is arbitrary
(except for the fact that it passes through x,); hence, V f (x,) must be perpendicular the tangent vector of

every curve through x,. But the only vector perpendicular to every other vector is the zero vector. Thus,
we must have

Vi(x,)=0

O

This theorem gives a necessary condition for a point x, € U to be a local extremum for a C? function on
U C R™. Tt is not sufficient however. To develop a sufficient condition, we shall look a little more closely at
the Taylor expansion of a C? function in the neighborhood of a critical point.

In general, for points sufficiently close to x,,

70 7 f (x0) 4 T (x0) - (6= 0) 5 (=) H (%) (x %)

Now if %, is a critical point of f then Vf (x,) =0, so

£ 2 £ (%) + 5 (5= x0) T HF (x0) (x— %)

Thus, to show that, for all points close to x,, f(x) is always greater than f(x,) it would suffice to show
that

% (x —x0) Hf (x,) (x —x,) >0 for all x;

and to show that, for all points close to x,, f(x) is always less than f (x,) it would suffice to show that

1
5 (x —x,) Hf (x,) (x —x,) <0 for all x.
DEFINITION 11.4. An n x n matric A is called positive definite if
vIiAv >0

for any non-zero n-dimensional column vector v. An n x n matric A is called negative definite if
vIiAv <0

for any non-zero n-dimensional column vector v.

The observation made above can now be phrased more succinctly.

THEOREM 11.5. Let f : U C R® — R be a C? function. If x, is a critical point of f and the Hessian
matriz Hf (x,) is positive definite, then X, is a local minimum. Ifx, is a critical point of f and the Hessian
matriz Hf (x,) is negative definite, then X, is a local mazimum.

What remains is to develop some useful techniques for detecting when a given matrix is positive or negative
definite.

THEOREM 11.6. An n xn matriz is posilive (respectively, negalive) definite if and only if all its eigenvalues
are positive (respectively, negalive).

For the particular case when n = 2 we have an easier test for positive and negative definiteness.
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a

LEMMA 11.7. Let A = < b

Zc) ) be a symmelric 2 X 2 malriz with a,b,c € R. Then A is posilive definite
if and only if

a>0 and ac—b*>0
and A is negative definite if and only if

a<0 and ac—b>>0

Proof. Let v = (x,y) be an arbitrary non-zero vector. Then

vIAV = (2,y) Z ﬁ><z>

. axr + by

= ax®+ 2bxy + cy?
= ax? —|—2bxy2—|— b—lﬁ — b_lﬁ + cy?
= a(x—l—%y) + (c—bjj)yQ
If A is positive definite, the expression on the right hand side must positive for all choices of z and y. In
particular, it must be positive when y = 0, which leads to
0 < ax?
which implies that
a>0

The right hand side must also be positive when z = —gy; this leads to
b2
0< <c — —) y?
a

ac—12>0

which implies

If A is negative definite, then the expression on the right hand side of (1) must be negative for all choices
of x and y (not both zero). Choosing y = 0 leads to the condition

0> ax?
which implies that

a<0

b2
0< <c——> y>
a

Multiplying both sides of this inequality by y% we get the following condition
ac—b%>0

Setting = = —gy leads to the condition

(Because o must be negative, when we multiply both sides of the inequality by % we must also reverse the
y

direction of the inequality.)

We can now employ the above criterion to determine when the Hessian matrix of a function f : U C R2 — R
is positive or negative definite. Namely,

Priy L
HY (x,) = ( AN )
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is positive definite if

2 2 2 2
@ (H ) () - () >0
(i) 2L (%) > 0
and negative definite if
2 2 2 2
() (3 &) (%) - (£5x)) >0
(i) 2 (x,) <0

Let me now summarize the second derivative test for the case when n = 2.

THEOREM 11.8. (Second Derivative Test). Let f be a C? function on open subset U C R%. Ifx, € U is a
critical point of f and

)

0 (300 (2 x0) - (2 () >0

]

(i) 21 (x,) >0
then x, is a local minimum. If x, € U is a critical point of f and
. 52 52 92 2
@) () (5 x) - (£ x)) >0
2
(it") &2t (x0) <0

then x, is a local maximum.



