
LECTURE 11

Maxima and Minima

Definition 11.1. Let f : R
n
→ R be a real-valued function of several variables. A point xo ∈ R

n
is called

a local minimum of f if there is a neighborhood U of x
o
such that

f(x) ≥ f(xo) for all x ∈ U .

A point xo ∈ R
n
is called a local maxmum of f if there is a neighborhood U of xo such that

f(x) ≤ f(xo) for all x ∈ U .

A point xo ∈ R
n
is called a local extremum if it is either a local minimum or a local maximum.

Definition 11.2. Let f : R
n
→ R be a real-valued function of several variables. A critical point of f is

a point xo where

∇f(xo) = 0.

If a critical point is not also a local extremum then it is called a saddle point.

Theorem 11.3. Suppose U is an open subset of R
n
, f : U → R is differentiable, and xo is a local extremum.

Then

∇f(xo) = 0

i.e., xo is a critical point of f .

Proof. Suppose xo is an extremum of f . Then there exists a neighborhood N of xo such that either

f(x) ≥ f (xo) , for all x ∈ N

or

f(x) ≤ f (xo) , for all x ∈ NR.

Let σ : I ⊂ R → R
n be any smooth path such that σ(0) = xo. Since σ is in particular continuous, there

must be a subinterval IN of I containing 0 such that

σ(t) ∈ N , for all t ∈ IN .

But then if we define

h(t) ≡ f (σ(t))

we see that since σ(t) lies in N for all t ∈ IN , we must have either

h(t) = f (σ(t)) ≥ f (xo) = h(0) , for all t ∈ IN

or

h(t) = f (σ(t)) ≤ f (xo) = h(0) , for all t ∈ IN .

Thus, t = 0 is an extremum for the smooth function h(t). From Calc. I, we know that if h(t) is differentiable

and has a critical point at t = 0, then necessarily

0 =
dh

dt
(0) .
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Employing the chain rule we get

0 =
dh

dt
(0)

= ∇f
∣
∣
σ(0) ·

dσ

dt
(0)

= ∇f (xo) ·
dσ

dt
(0)

Thus, ∇f (xo) must be perpendicular to the tangent vector of σ at t = 0. But the curve σ is arbitrary

(except for the fact that it passes through xo); hence, ∇f (xo) must be perpendicular the tangent vector of

every curve through xo. But the only vector perpendicular to every other vector is the zero vector. Thus,

we must have

∇f (xo) = 0 .

This theorem gives a necessary condition for a point xo ∈ U to be a local extremum for a C
2 function on

U ⊂ Rn. It is not sufficient however. To develop a sufficient condition, we shall look a little more closely at

the Taylor expansion of a C2 function in the neighborhood of a critical point.

In general, for points sufficiently close to xo,

f(x) ≈ f (xo) +∇f (xo) · (x− xo) +
1

2
(x− xo)

T
H (xo) (x− xo) .

Now if xo is a critical point of f then ∇f (xo) = 0, so

f(x) ≈ f (xo) +
1

2
(x − xo)

T
Hf (xo) (x− xo) .

Thus, to show that, for all points close to xo, f(x) is always greater than f (xo) it would suffice to show

that

1

2
(x − xo)

T
Hf (xo) (x − xo) ≥ 0 for all x;

and to show that, for all points close to xo, f(x) is always less than f (xo) it would suffice to show that

1

2
(x − xo)

T
Hf (xo) (x − xo) ≤ 0 for all x.

Definition 11.4. An n× n matrix A is called positive definite if

v
T
Av > 0

for any non-zero n-dimensional column vector v. An n× n matrix A is called negative definite if

v
T
Av < 0

for any non-zero n-dimensional column vector v.

The observation made above can now be phrased more succinctly.

Theorem 11.5. Let f : U ⊂ R
n
→ R be a C

2 function. If xo is a critical point of f and the Hessian

matrix Hf (xo) is positive definite, then xo is a local minimum. If xo is a critical point of f and the Hessian

matrix Hf (xo) is negative definite, then xo is a local maximum.

What remains is to develop some useful techniques for detecting when a given matrix is positive or negative

definite.

Theorem 11.6. An n×n matrix is positive (respectively, negative) definite if and only if all its eigenvalues

are positive (respectively, negative).

For the particular case when n = 2 we have an easier test for positive and negative definiteness.
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Lemma 11.7. Let A =

(
a b

b c

)
be a symmetric 2× 2 matrix with a, b, c ∈ R. Then A is positive definite

if and only if

a > 0 and ac− b
2 > 0 ,

and A is negative definite if and only if

a < 0 and ac− b2 > 0 .

Proof. Let v = (x, y) be an arbitrary non-zero vector. Then

v
T
Av = (x, y)

(
a b

b c

)(
x

y

)

= (x, y)

(
ax+ by

bx+ cy

)

= ax
2 +2bxy + cy

2

= ax
2 +2bxy +

b
2
y
2

a
−

b
2
y
2

a
+ cy

2

= a

(
x+

by

a

)2
+

(
c−

b
2

a

)
y
2

If A is positive definite, the expression on the right hand side must positive for all choices of x and y. In

particular, it must be positive when y = 0, which leads to

0 < ax
2

which implies that

a > 0 .

The right hand side must also be positive when x = − b
a
y; this leads to

0 <

(
c−

b
2

a

)
y
2

which implies

ac − b
2
> 0 .

If A is negative definite, then the expression on the right hand side of (1) must be negative for all choices

of x and y (not both zero). Choosing y = 0 leads to the condition

0 > ax
2

which implies that

a < 0 .

Setting x = − b
a
y leads to the condition

0 <

(
c−

b
2

a

)
y
2

Multiplying both sides of this inequality by a
y2

we get the following condition

ac − b
2
> 0 .

(Because a must be negative, when we multiply both sides of the inequality by a

y2
we must also reverse the

direction of the inequality.)

We can now employ the above criterion to determine when the Hessian matrix of a function f : U ⊂ R2
→ R

is positive or negative definite. Namely,

Hf (xo) =

(
∂2f
∂x2

(xo)
∂2f
∂x∂y

(xo)

∂2f
∂x∂y

(xo)
∂2f
∂y2

(xo)

)
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is positive definite if

(i)

(
∂2f
∂x2

(xo)

)(
∂2f
∂y2

(xo)

)
−

(
∂
2
f

∂x∂y
(xo)

)2
> 0

(ii)
∂
2
f

∂x2
(xo) > 0 .

and negative definite if

(i′)
(
∂2f
∂x2

(xo)
)(

∂2f
∂y2

(xo)
)
−

(
∂2f
∂x∂y

(xo)
)2

> 0

(ii′)
∂
2
f

∂x2
(xo) < 0 .

Let me now summarize the second derivative test for the case when n = 2.

Theorem 11.8. (Second Derivative Test). Let f be a C2 function on open subset U ⊂ R
2. If x

o
∈ U is a

critical point of f and

(i)

(
∂2f
∂x2

(xo)

)(
∂2f
∂y2

(xo)

)
−

(
∂2f
∂x∂y

(xo)

)2
> 0

(ii)
∂2f
∂x2

(xo) > 0

then xo is a local minimum. If xo ∈ U is a critical point of f and

(i′)
(
∂
2
f

∂x2
(xo)

)(
∂
2
f

∂y2
(xo)

)
−

(
∂
2
f

∂x∂y
(xo)

)2
> 0

(ii′)
∂
2
f

∂x2
(xo) < 0

then xo is a local maximum.


