LECTURE 10

Higher Order Derivatives and Taylor Expansions

1. Higher Order Derivatives

Since a partial derivative of a function $f : \mathbb{R}^n \to \mathbb{R}$ is (wherever it exists) again a function from \mathbb{R}^n to \mathbb{R} it makes sense to talk about partial derivatives of partial derivatives; i.e., higher order partial derivatives.

EXAMPLE 10.1. Compute $\frac{\partial^2 f}{\partial x^2} \equiv \frac{\partial}{\partial x} \frac{\partial f}{\partial x}$, $\frac{\partial^2 f}{\partial x \partial y} \equiv \frac{\partial}{\partial x} \frac{\partial f}{\partial y}$ and $\frac{\partial^2 f}{\partial y \partial x} \equiv \frac{\partial}{\partial y} \frac{\partial f}{\partial x}$ where $f(x,y) = 3x^2y + x^2$.

$$\frac{\partial^2 f}{\partial x^2} \equiv \frac{\partial}{\partial x} \frac{\partial f}{\partial x}$$
$$= \frac{\partial}{\partial x} (6xy + 2x)$$
$$= 6y + 2$$

$$\frac{\partial^2 f}{\partial x \partial y} \equiv \frac{\partial}{\partial x} \frac{\partial f}{\partial y}$$
$$= \frac{\partial}{\partial x} \left(3x^2 + 0 \right)$$
$$= 6x$$

$$\frac{\partial^2 f}{\partial y \partial x} \equiv \frac{\partial}{\partial y} \frac{\partial f}{\partial x}$$
$$= \frac{\partial}{\partial y} (6xy + 2x)$$
$$= 6x + 0$$
$$= 6x$$

Note that in this example

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$$

This is in fact a general phenomenon; the value of a mixed partial derivative does not depend on the order in which the derivatives are taken. Stated more formally;

THEOREM 10.2. If $f : \mathbb{R}^n \to \mathbb{R}$ is such that all double partial derivatives $\frac{\partial^2 f}{\partial x_i \partial x_j}$ exist and are continues, then

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}$$

2. Taylor's Formula for Functions of Several Variables

Recall that if f(x) is a function of a single variable that is continuous and differentiable up to order n + 1then Taylor's theorem says that

$$f(x) = f(a) + f'(a)(x-a) + \frac{1}{2!}f''(a)(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + R_n(x,a)$$

where the error term $R_n(x, a)$ is given by the formula

$$R_{n}(x,a) = \int_{a}^{x} \frac{x-s}{n!} f^{(n+1)}(s) ds$$

and that, moreover, the error term is of order $(x-a)^{n+1}$. Thus, to order $(x-a)^n$ we can approximate the function f(x) by the polynomial function

$$T_n(x) = f(a) + f'(a)(x-a) + \frac{1}{2!}f''(a)(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

There is an analogous theorem for functions of severa variables. However, since its general statement is a bit messy unless we introduce some new notation, we'll simply state the first and second order Taylor formulae

THEOREM 10.3. Let $f : \mathbb{R}^n \to \mathbb{R}$ have continuous partial derivatives up to order 2. Then we may write

$$f(\mathbf{x}) = f(\mathbf{a}) + \nabla f(\mathbf{a}) \cdot (\mathbf{x} - \mathbf{a}) + R_1(\mathbf{x}, \mathbf{a})$$

with the error term $R_1(\mathbf{x}, \mathbf{a})$ going to zero faster that a constant times $\|\mathbf{x} - \mathbf{a}\|^2$ as $\mathbf{x} \to \mathbf{a}$.

The first order Taylor polynomial is the function

$$T_{1}(\mathbf{x}) = f(\mathbf{a}) + \nabla f(\mathbf{a}) \cdot (\mathbf{x} - \mathbf{a})$$

= $f(\mathbf{a}) + \frac{\partial f}{\partial x_{1}} \Big|_{\mathbf{a}} (x_{1} - a_{1}) + \dots + \frac{\partial f}{\partial x_{n}} \Big|_{\mathbf{a}} (x_{n} - a_{n})$

Note that this function is linear in the coordinates of \mathbf{x} . It's graph is thus a flat plane and generalizes the idea of the *best straight line fit to a curve*: it represents the best flat plane approximation to the graph of $f(\mathbf{x})$ near the point \mathbf{x}_o .

THEOREM 10.4. Let $f : \mathbb{R}^n \to \mathbb{R}$ have continuous partial derivatives up to order 3. Then we may write

$$f(\mathbf{x}) = f(\mathbf{a}) + \sum_{i=0}^{n} \frac{\partial f}{\partial x_i}(\mathbf{a}) \left(x_i - a_i\right) + \frac{1}{2} \sum_{i=0}^{n} \sum_{j=0}^{n} \frac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{a}) \left(x_i - a_i\right) \left(x_j - a_j\right) + R_2(\mathbf{x}, \mathbf{a})$$

with the error term $R_2(\mathbf{x}, \mathbf{a})$ going to zero faster that a constant times $\|\mathbf{x} - \mathbf{a}\|^3$ as $\mathbf{x} \to \mathbf{a}$.

EXAMPLE 10.5. Compute the second order Taylor formula for the function $f(x,y) = xy + x^2 + y^2$ about the point (1,1).

• We have

$$\begin{aligned} f(1,1) &= 1+1+1=3\\ \frac{\partial f}{\partial y}\Big|_{(1,1)} &= (y+2x+0)|_{(1,1)} = 3\\ \frac{\partial f}{\partial y}\Big|_{(1,1)} &= (x+0+2y)|_{(1,1)} = 3\\ \frac{\partial^2 f}{\partial x^2}\Big|_{(1,1)} &= (0+2+0)|_{(1,1)} = 2\\ \frac{\partial^2 f}{\partial x \partial y}\Big|_{(1,1)} &= \frac{\partial^2 f}{\partial y \partial x}\Big|_{(1,1)} = (1+0+0)|_{(1,1)} = 1\\ \frac{\partial^2 f}{\partial y^2}\Big|_{(1,1)} &= (0+0+2)|_{(1,1)} = 2\end{aligned}$$

 \mathbf{So}

$$\begin{split} f(x,y) &= f(1,1) + \frac{\partial f}{\partial y} \Big|_{(1,1)} (x-1) + \frac{\partial f}{\partial y} \Big|_{(1,1)} (y-1) \\ &+ \frac{1}{2} \left(\left. \frac{\partial^2 f}{\partial x^2} \right|_{(1,1)} (x-1)^2 + \left. \frac{\partial^2 f}{\partial x \partial y} \right|_{(1,1)} (x-1) (y-1) \\ &+ \left. \left. \frac{\partial^2 f}{\partial y \partial x} \right|_{(1,1)} (y-1) (x-1) + \left. \frac{\partial^2 f}{\partial y^2} \right|_{(1,1)} (y-1)^2 \right) \\ &+ \mathcal{O} \left(\| (x,y) - (1,1) \|^3 \right) \\ &= 3 + 3(x-1) + 3(y-1) + \frac{1}{2} \left(2(x-1)^2 + 2(x-1)(y-1) + 2(y-1)^2 \right) \\ &+ \mathcal{O} \left(\| (x,y) - (1,1) \|^3 \right) \\ &= 3 + 3(x-1) + 3(y-1) + (x-1)^2 + (x-1)(y-1) + (y-1)^2 \\ &+ \mathcal{O} \left(\| (x,y) - (1,1) \|^3 \right) \end{split}$$

Below I present another (equivalent) formula for the second order Taylor expansion.

Let $(\mathbf{x} - \mathbf{a})$ be the *n*-dimensional column vector with components

$$(\mathbf{x} - \mathbf{a}) = \begin{pmatrix} x_1 - a_1 \\ x_2 - a_{21} \\ \vdots \\ x_n - a_n \end{pmatrix}$$

and let $(\mathbf{x} - \mathbf{a})^T$ be the matrix transpose of $(\mathbf{x} - \mathbf{a})$ (an *n*-dimensional row vector)

$$(\mathbf{x} - \mathbf{a})^{T} = (x_1 - a_1, x_2 - a_2, \cdots, x_n - a_n)$$

The gradient vector $\nabla f(\mathbf{a}) = Df(\mathbf{a})$, according to the conventions of Section 2.3 is an *n*-dimensional row vector;

$$\nabla f(\mathbf{a}) = \left(\frac{\partial f}{\partial x_1}(\mathbf{a}), \frac{\partial f}{x_2}(\mathbf{a}), \cdots, \frac{\partial f}{\partial x_n}(\mathbf{a})\right)$$
.

Let us now define the **Hessian matrix** at the point **a** as the $n \times n$ matrix $\mathbf{H}f(\mathbf{a})$ defined by

$$\mathbf{H}f(\mathbf{a}) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1}(\mathbf{a}) & \frac{\partial^2 f}{\partial x_1 \partial x_2}(\mathbf{a}) & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(\mathbf{a}) \\ \frac{\partial^2 f}{\partial x_2 \partial x_1}(\mathbf{a}) & \frac{\partial^2 f}{\partial x_2 \partial x_2}(\mathbf{a}) & \cdots & \vdots \\ \vdots & \vdots & & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(\mathbf{a}) & \cdots & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_n}(\mathbf{a}) \end{pmatrix}$$

Then we can write

$$f(\mathbf{x}) \approx f(\mathbf{a}) + \nabla f(\mathbf{a}) \cdot (\mathbf{x} - \mathbf{a}) + \frac{1}{2} (\mathbf{x} - \mathbf{a})^T \mathbf{H} f(\mathbf{a}) (\mathbf{x} - \mathbf{a}) + \mathcal{O}\left(\|\mathbf{x} - \mathbf{a}\|^3 \right)$$

for the second order Taylor expansion of f about **a**.

•