
LECTURE 10

Higher Order Derivatives and Taylor Expansions

1. Higher Order Derivatives

Since a partial derivative of a function f : R
n
→ R is (wherever it exists) again a function from R

n to R it

makes sense to talk about partial derivatives of partial derivatives; i.e., higher order partial derivatives.

Example 10.1. Compute
∂2f
∂x2
≡

∂
∂x

∂f
∂x
,

∂2f
∂x∂y

≡
∂
∂x

∂f
∂y
and

∂2f
∂y∂x

≡
∂
∂y

∂f
∂x
where f(x, y) = 3x2y + x2.

∂2f

∂x2
≡

∂

∂x

∂f

∂x

=
∂

∂x
(6xy + 2x)

= 6y + 2

∂2f

∂x∂y
≡

∂

∂x

∂f

∂y

=
∂

∂x

(
3x2 +0

)

= 6x

∂2f

∂y∂x
≡

∂

∂y

∂f

∂x

=
∂

∂y
(6xy + 2x)

= 6x+ 0

= 6x

Note that in this example

∂2f

∂x∂y
=

∂2f

∂y∂x

This is in fact a general phenomenon; the value of a mixed partial derivative does not depend on the order

in which the derivatives are taken. Stated more formally;

Theorem 10.2. If f : Rn
→ R is such that all double partial derivatives

∂2f
∂xi∂xj

exist and are continous,

then

∂
2
f

∂xi∂xj
=

∂
2
f

∂xj∂xi

1
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2. Taylor’s Formula for Functions of Several Variables

Recall that if f(x) is a function of a single variable that is continuous and differentiable up to order n+ 1

then Taylor’s theorem says that

f(x) = f(a) + f
′
(a)(x− a) +

1

2!
f ′′
(a)(x− a)2 + · · ·+

f (n)
(a)

n!
(x− a)n +Rn(x, a)

where the error term Rn(x, a) is given by the formula

Rn(x, a) =

∫
x

a

x− s

n!
f
(n+1)

(s)ds

and that, moreover, the error term is of order (x− a)
n+1
. Thus, to order (x− a)

n

we can approximate the

function f(x) by the polynomial function

Tn(x) = f(a) + f
′
(a)(x− a) +

1

2!
f

′′
(a)(x− a)

2
+ · · ·+

f
(n)(a)

n!
(x− a)

n

There is an analogous theorem for functions of severa variables. However, since its general statement is

a bit messy unless we introduce some new notation, we’ll simply state the first and second order Taylor

formulae

Theorem 10.3. Let f : Rn → R have continuous partial derivatives up to order 2. Then we may write

f (x) = f(a) +∇f(a) · (x − a) +R1(x,a)

with the error term R1(x, a) going to zero faster that a constant times ‖x − a‖
2
as x→ a.

The first order Taylor polynomial is the function

T1(x) = f(a) +∇f(a) · (x− a)

= f(a) +
∂f

∂x1

∣
∣
∣
∣
a

(x1 − a1) + · · ·+
∂f

∂xn

∣
∣
∣
∣
a

(x
n
− a

n
) .

Note that this function is linear in the coordinates of x. It’s graph is thus a flat plane and generalizes the

idea of the best straight line fit to a curve: it represents the best flat plane approximation to the graph of

f(x) near the point x
o
.

Theorem 10.4. Let f : Rn
→ R have continuous partial derivatives up to order 3. Then we may write

f (x) = f(a) +

n∑

i=0

∂f

∂xi
(a) (xi − ai) +

1

2

n∑

i=0

n∑

j=0

∂2f

∂xi∂xj
(a) (xi − ai) (xj − aj) +R2(x,a)

with the error term R2(x, a) going to zero faster that a constant times ‖x − a‖
3
as x→ a.

Example 10.5. Compute the second order Taylor formula for the function f(x, y) = xy + x
2 + y

2 about

the point (1,1).
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• We have

f(1,1) = 1 + 1 + 1 = 3

∂f

∂y

∣
∣
∣
∣
(1,1)

= (y +2x+ 0)|(1,1) = 3

∂f

∂y

∣
∣
∣
∣
(1,1)

= (x+0 + 2y)|(1,1) = 3

∂
2
f

∂x2

∣
∣
∣
∣
(1,1)

= (0 + 2 + 0)|(1,1) = 2

∂
2
f

∂x∂y

∣
∣
∣
∣
(1,1)

=
∂
2
f

∂y∂x

∣
∣
∣
∣
(1,1)

= (1 + 0 + 0)|(1,1) = 1

∂
2
f

∂y2

∣
∣
∣
∣
(1,1)

= (0 + 0 + 2)|(1,1) = 2

So

f(x, y) = f(1,1) +
∂f

∂y

∣
∣
∣
∣
(1,1)

(x− 1) +
∂f

∂y

∣
∣
∣
∣
(1,1)

(y − 1)

+
1

2

(
∂2f

∂x2

∣∣∣∣
(1,1)

(x− 1)2 +
∂2f

∂x∂y

∣∣∣∣
(1,1)

(x− 1)(y − 1)

+
∂2f

∂y∂x

∣∣∣∣
(1,1)

(y − 1)(x− 1) +
∂2f

∂y2

∣∣∣∣
(1,1)

(y − 1)2

)

+O

(
‖(x, y) − (1,1)‖

3
)

= 3 + 3(x− 1) + 3(y − 1) +
1

2

(
2(x− 1)2 + 2(x− 1)(y − 1) + 2(y − 1)2

)
+O

(
‖(x, y) − (1,1)‖

3
)

= 3 + 3(x− 1) + 3(y − 1) + (x− 1)2 + (x− 1)(y − 1) + (y − 1)2

+O

(
‖(x, y) − (1,1)‖

3
)

Below I present another (equivalent) formula for the second order Taylor expansion.

Let (x− a) be the n-dimensional column vector with components

(x − a) =




x1 − a1

x2 − a21

...

xn − an




and let (x− a)
T
be the matrix transpose of (x− a) (an n-dimensional row vector)

(x− a)
T
= (x1 − a1, x2 − a2, · · · , xn − an) .

The gradient vector ∇f(a) = Df(a), according to the conventions of Section 2.3 is an n-dimensional row

vector;

∇f(a) =

(
∂f

∂x1
(a),

∂f

x2

(a), · · · ,
∂f

∂xn
(a)

)
.
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Let us now define the Hessian matrix at the point a as the n× n matrix Hf(a) defined by

Hf(a) =




∂
2
f

∂x1∂x1
(a)

∂
2
f

∂x1∂x2
(a) · · ·

∂
2
f

∂x1∂xn
(a)

∂
2
f

∂x2∂x1
(a)

∂
2
f

∂x2∂x2
(a) · · ·

.

.

.

.

.

.
.
.
.

.

.

.

∂
2
f

∂xn∂x1
(a) · · · · · ·

∂
2
f

∂xn∂xn
(a)




.

Then we can write

f(x) ≈ f(a) +∇f(a) · (x− a) +
1

2
(x− a)

T
Hf(a) (x− a) +O

(
‖x− a‖3

)

for the second order Taylor expansion of f about a.


