LECTURE 10

Higher Order Derivatives and Taylor Expansions

1. Higher Order Derivatives

Since a partial derivative of a function f : R™ — R is (wherever it exists) again a function from R™ to R it
makes sense to talk about partial derivatives of partial derivatives; i.e., higher order partial derivatives.
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ExaMmpLE 10.1. Compute %J; = %%g , %9% = %%5 and 8%,8% = %%ﬁ where f(z,y) = 3z%y + z2.
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This is in fact a general phenomenon; the value of a mized partial derivative does not depend on the order
in which the derivatives are taken. Stated more formally;

THEOREM 10.2. If f : R™ — R is such that all double partial derivatives %’;—, erist and are continous,
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2. Taylor’s Formula for Functions of Several Variables

Recall that if f(x) is a function of a single variable that is continuous and differentiable up to order n + 1
then Taylor’s theorem says that

f"(a)

n!

f(@) = f(a)+ f(a)(z —a) + %f”(a)(x —a)t 4t (x —a)" + Ra(z,0)

where the error term Ry,(x,a) is given by the formula
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and that, moreover, the error term is of order (z — a)"*'. Thus, to order (z — a)" we can approximate the
function f(z) by the polynomial function
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To(x) = fa) + f(a)(z — a) + %f”(a)(x —a)+-+ (z—a)"

There is an analogous theorem for functions of severa variables. However, since its general statement is
a bit messy unless we introduce some new notation, we’ll simply state the first and second order Taylor
formulae

THEOREM 10.3. Let f: R™ — R have continuous partial derivatives up to order 2. Then we may write
fx)=f(a) +Vf(a)- (x—a)+ Ri(x,a)

with the error term Ry (x,a) going to zero faster that a constant times ||x — al|* as x — a.

The first order Taylor polynomial is the function

Ti(x) = f(a) + Vf(a)- (x—a)
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Note that this function is linear in the coordinates of x. It’s graph is thus a flat plane and generalizes the

idea of the best straight line fit to a curve: it represents the best flat plane approximation to the graph of
f(x) near the point x,.

THEOREM 10.4. Let f : R™ — R have continuous partial derivatives up to order 3. Then we may write

F00 = (@) + 30 5 (@) (= 0) 5 D0 D0 S (a) o - a0) (15 - ) + Ralx,2)

with the error term Ry(x,a) going to zero faster that a constant times ||x — a||’ as x — a.

ExamPLE 10.5. Compute the second order Taylor formula for the function f(z,y) = zy + 22 + y* about
the point (1,1).
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Below I present another (equivalent) formula for the second order Taylor expansion.

Let (x — a) be the n-dimensional column vector with components

r1— a1

To — @21
(x —a) =

Tn — Qn

and let (x — a)T be the matrix transpose of (x — a) (an n-dimensional row vector)
(x—a)" = (v1— a1, 72— ag,--+ , 2 — an)

The gradient vector V f(a) = D f(a), according to the conventions of Section 2.3 is an n-dimensional row
vector;

Vi(a) = (%(a)f—gww 7%@)



2. TAYLOR’S FORMULA FOR FUNCTIONS OF SEVERAL VARIABLES

Let us now define the Hessian matrix at the point a as the n x n matrix Hf (a) defined by
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Then we can write
60 f(8) + 1 (a) - (x— ) + 3¢~ a) T @) (x ~ ) + O (x — )

for the second order Taylor expansion of f about a.



