LECTURE 9

Paths and Curves in R"

We have used the notion of a path v : R — R™ several times already, I now want formalize this fundamental
idea.

DEFINITION 9.1. A (parametric) path in R™ is a continuous function v : I C R — R™ from some interval
I on the real line into R™.

DEFINITION 9.2. A curve in R™ is the image of a path in R™: i.e., the curve corresponding to a path
v: ITCR—R"is

C,={xeR" | x=~(t) for somet I}

Although at this stage, we're careful to distinguish between the function that defines the curve and its
image in R™ we’ll no doubt soon lapse into a usage in which the both words curve and path can mean either
a function v : I C R — R™ or its image. Nevertheless, the proper interpretation of these words should be
clear from the context.

The reason for making a distinction at this junction though is because to a particular curve there can
correspond infinitely many parametric paths. To see this note that the image of the path
Y1 :[0,00] CR — R3 @y (t) = (,¢,¢)

coincides with the images of

Yo : [0,00] CR — R? : yo(t) = (¢2,42,17)

v3:[0,00] C R — R?: n3(t) = (¢%,,¢%)
and even that of

Y10 [0,00] CR — R?: (k) = (e, €, €)
The following theorem tells us when and how two parametric paths might correspond to the same curve.

THEOREM 9.3. Suppose v; : [1 CR — R™ and vo : I CR — R™ are both continuous one-to-one maps
and correspond to the same curve C': i.e,

{x eR" | x=7(t) for somet € 1} =C={x € R" | x = 1(t) for somet € I}
Then there exists a one-to-one map h from Iy to Iy such that
Ye=moh
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Proof. Since 7, is a one-to-one map onto C, its inverse 7; ' : €' — I is well-defined and is also one-to-one.
Set

h=v "0

This function clearly maps I onto I; and because it is the composition of a pair of one-to-one maps, it is
also one-to-one. Finally,

moh=yo(r'or)=(Mmon")or="r

L

REMARK 9.4. If one thinks of the map h : I — I; as a reparameterization of the interval I;, then the
theorem says that if you have two one-to-one parameterized paths with the same image curve, then one
path is always interpretable as a reparameterization of the other and vice-versa. Lacking a canoical choice
of parametric path for a given curve, we say that the parametric path corresponding to a given curve is
only determined up to a choice of parameterization. I note that this idea in turn is the basis for the most
prominient unified quantum theory (string theory) today.

DEFINITION 9.5. Ifvy: I CR — R" is a differentiable path then the tangent vector «'(t) to the path v at
the point ~(t) is
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REMARK 9.6. If we think of a path v : R - R? : t — ~(t) as a function that prescribes the position of a
particle at time ¢ then we can regard the corresponding curve C, as the trajectory of the particle and the
tangent vector at (1) as the velocily vector at time ¢.

DEFINITION 9.7. If (%) is a path, and if v(to) # 0, then the equation of the tangent line to the curve C,
al the point ~(to) is

x = 7(to) +7'(to)(t — to)

EXAMPLE 9.8. Suppose a particle moves along a trajectory described by the function
x(t) = (cos(2t),sin(2¢),1)

What is the velocity of the particle at time ¢ = 3.

e The trajectory of the particle turns out to be a helix about the z-axis. The velocity vector at time
t is just the tangent vector at time ¢:
dx
" (t) = (—2sin(t), 2cos(t), 1)
which at time { = 3 is
dx

= (3) = (—2sin(3),2cos(3),1)
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EXAMPLE 9.9. Show that the curve prescribed by
x(1) = (2t cos(t),tsin(t), —1tsin(t))

lies completely in a plane and identify that plane.

e Let’s first compute the tangent vector to curve at an arbitrary point x(t).

d
s t) = (2cos(t) — 2t sin(t),sin(f) + L cos(f), —sin(f) — t cos(?
dt
At £ = 0 we have
dx
—(0) =(2,0,0
2(0) = (2,0,0)
at t = /2t we have
dx /m
@ (3) = (w11

In order to find a vector perpendicular to these two vectors we compute their cross product:
n=(2,0,0) x (—m,1,-1)
= ((0)(=1) = (0)(1), (0)(=7) = (2)(=1), (2)(1) — (0)(=m))
=(0,2,2)
We now show that n is perpendicular to every tangent vector to the curve x(t):

n- ax (t) =(0,2,2) - (2cos(t) — 2tsin(t),sin(t) + ¢ cos(t), —sin(t) — t cos(t))

" =0+ 2(sin(t) + tcos(t)) + 2 (—sin(t) — tcos(t))
=0
Since n is perpendicular to every tangent vector of x(¢) the corresponding curve never leaves the
plane defined by the equation
0=n-(x—x(0))
=(0,2,2) - (x — 0,y — 0,2 —0)
=2y —2z2



