
LECTURE 9

Paths and Curves in R
n

We have used the notion of a path γ : R→ R
n
several times already, I now want formalize this fundamental

idea.

Definition 9.1. A (parametric) path in Rn is a continuous function γ : I ⊂ R→ R
n from some interval

I on the real line into Rn.

Definition 9.2. A curve in R
n is the image of a path in R

n: i.e., the curve corresponding to a path

γ : I ⊂ R→ R
n is

Cγ = {x ∈ Rn | x = γ(t) for some t ∈ I}

Although at this stage, we’re careful to distinguish between the function that defines the curve and its

image in Rn we’ll no doubt soon lapse into a usage in which the both words curve and path can mean either

a function γ : I ⊂ R → R
n or its image. Nevertheless, the proper interpretation of these words should be

clear from the context.

The reason for making a distinction at this junction though is because to a particular curve there can

correspond infinitely many parametric paths. To see this note that the image of the path

γ1 : [0,∞] ⊂ R→ R
3
: γ1(t) = (t, t, t)

coincides with the images of

γ2 : [0,∞] ⊂ R→ R
3
: γ2(t) = (t
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)

γ3 : [0,∞] ⊂ R→ R
3
: γ3(t) = (t

3
, t

3
, t

3
)

and even that of

γ1 : [0,∞] ⊂ R→ R
3
: γ4(t) = (e

t
, e

t
, e

t
)

The following theorem tells us when and how two parametric paths might correspond to the same curve.

Theorem 9.3. Suppose γ1 : I1 ⊂ R → R
n

and γ2 : I2 ⊂ R → R
n

are both continuous one-to-one maps

and correspond to the same curve C: i.e,

{x ∈ R
n

| x = γ1(t) for some t ∈ I1} = C = {x ∈ R
n

| x = γ2(t) for some t ∈ I2}

Then there exists a one-to-one map h from I2 to I1 such that

γ2 = γ1 ◦ h
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Proof. Since γ1 is a one-to-one map onto C, its inverse γ
−1

1
: C → I1 is well-defined and is also one-to-one.

Set

h = γ
−1

1
◦ γ2

This function clearly maps I2 onto I1 and because it is the composition of a pair of one-to-one maps, it is

also one-to-one. Finally,

γ1 ◦ h = γ1 ◦
(
γ
−1

1
◦ γ2

)
=

(
γ1 ◦ γ

−1

1

)
◦ γ2 = γ2

Remark 9.4. If one thinks of the map h : I2 → I1 as a reparameterization of the interval I1, then the

theorem says that if you have two one-to-one parameterized paths with the same image curve, then one

path is always interpretable as a reparameterization of the other and vice-versa. Lacking a canoical choice

of parametric path for a given curve, we say that the parametric path corresponding to a given curve is

only determined up to a choice of parameterization. I note that this idea in turn is the basis for the most

prominient unified quantum theory (string theory) today.

Definition 9.5. If γ : I ⊂ R→ R
n
is a differentiable path then the tangent vector γ

′(t) to the path γ at

the point γ(t) is

Dγ(t) =




dγ1

dt
(t)

dγ2

dt
(t)
.

.

.

dγn

dt
(t)


 ≈

(
dγ1

dt
(t),

dγ2

dt
(t), . . . ,

dγn

dt
(t)

)
∈ R

n

Remark 9.6. If we think of a path γ : R→ R
3
: t 
→ γ(t) as a function that prescribes the position of a

particle at time t then we can regard the corresponding curve Cγ as the trajectory of the particle and the

tangent vector at γ(t) as the velocity vector at time t.

Definition 9.7. If γ(t) is a path, and if γ(t0) �= 0, then the equation of the tangent line to the curve Cγ

at the point γ(t0) is

x = γ(t0) + γ
′
(t0)(t− t0)

Example 9.8. Suppose a particle moves along a trajectory described by the function

x(t) = (cos(2t), sin(2t), t)

What is the velocity of the particle at time t = 3.

• The trajectory of the particle turns out to be a helix about the z-axis. The velocity vector at time

t is just the tangent vector at time t:

dx

dt
(t) = (−2 sin(t), 2 cos(t), 1)

which at time t = 3 is

dx

dt
(3) = (−2 sin(3), 2 cos(3),1)
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Example 9.9. Show that the curve prescribed by

x(t) = (2t cos(t), t sin(t),−t sin(t))

lies completely in a plane and identify that plane.

• Let’s first compute the tangent vector to curve at an arbitrary point x(t).

dx

dt
(t) = (2 cos(t)− 2t sin(t), sin(t) + t cos(t),− sin(t) − t cos(t))

At t = 0 we have

dx

dt
(0) = (2, 0, 0)

at t = π/2t we have

dx

dt

(
π

2

)
= (−π,1,−1)

In order to find a vector perpendicular to these two vectors we compute their cross product:

n = (2,0, 0) × (−π,1,−1)

= ((0)(−1) − (0)(1), (0)(−π) − (2)(−1), (2)(1)− (0)(−π))

= (0,2, 2)

We now show that n is perpendicular to every tangent vector to the curve x(t):

n ·

dx

dt
(t) = (0, 2, 2) · (2 cos(t) − 2t sin(t), sin(t) + t cos(t),− sin(t)− t cos(t))

= 0 + 2(sin(t) + t cos(t)) + 2 (− sin(t) − t cos(t))

= 0

Since n is perpendicular to every tangent vector of x(t) the corresponding curve never leaves the

plane defined by the equation

0 = n· (x− x(0))

= (0,2,2) · (x− 0, y − 0, z − 0)

= 2y − 2z


