LECTURE 8

Directional Derivatives and the Gradient

In this lecture we specialize to the case where f : R" — R is a real-valued function of several variables. For
such a function the differential D f reduces to an 1 x n matrix, or equivalently an n-dimensional vector. In
fact we have
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so Df can be identified with the gradient of f.

We’ll come back to the gradient in a minute. But first let me introduce the notion of directional
derivatives.

DEFINITION 8.1. Lel f be a function from R™ toR, and let u be a unit vector in R™ (i.e, a vector of length
1). Then the directional derivative of f in the direction u al the point x is the limil

D,f(x) = %f(x+tu) . — }il%f(XHl? —f(x)

The directional derivative of f : R™ — R along the direction u at the point x is interpretable as the rate of
change in f as one moves away from the point x in the direction of u.

REMARK 8.2. We restrict u to be a unit vector because most often we're interested only in how a function
changes when we move in different directions. Since, we care only about the direction of u and not its
magnitude; we simply fix its magnitude to be 1.

ExaMmPLE 8.3. Compute the rate of change of f : (z,y,2) — 2%y in the direction u = ( ,%, —\%) at

the point (1,1,0).
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We need to compute
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Below we give a theorem that makes computations such as the one above a lot simpler.

THEOREM 8.4. If f : R™ — R is differentiable then all directional derivatives exist and, moreover, the
directional derivative of f in the direction u at the point X is given by

Vix)-u
Proof. Let v: R — R™ be the function
v(t) = x+tu

so that

1 (t) =x + tu1

Yo (t) = Iy + tug

T (t) = Ty + tuy,
and

fx+tu)=7())
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By the chain rule we have

D, f(x) = %f(x—l—tu)
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EXAMPLE 8.5. Let’s return to the preceding example and use our spanking new formula to compute the

directional derivative of f(z,y,2) = z%y2 along the direction u = (%, %, —%) at the point (1,1,0).

_ (21 oF of
Vf(l,l,()) - <6x’ ayv 6z> .1.0)
(2xyz 22, y)|(1
=(0,0,1)
So
if((1,1,0)+tu) V£(1,1,0)
dt —0
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The gradient Vf not only makes the computation of directional derivatives easier, it also makes it easy to
identify the direction in which a function increases most rapidly:

THEOREM 8.6. Let f: R™ — R be a differentiable function and assume that V f(x) # 0. Then the direction
of Vf(x) coincides with the direction in which f(x) is increasing most rapidly.

Proof. We want to determine the direction u in which a directional derivative

D, f(x) = %f(x—l—tu)

t=0
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is maximized. Using the preceding theorem we have
Du.f(x)=Vf(x)-u
= 96 1l cos(6)
where 0 is the angle between V f(x) and u. Since u is, by definition, a unit vector ||u|| = 1 and so

d
%f (x +tu) . = Vf(x)cos(0)

The right hand side is obviously maximized when 6 = 0; i.e. when u points in the same direction as V f(x).

REMARK 8.7. Another way of phrasing the result of this theorem is that, when one imagines the graph of
f as a surface with hilltops and valleys, the direction of the V f(x) corresponds to the direction uphill at
the point x.

Here is another application of the gradient.
THEOREM 8.8. Let f : R™ — R be a differentiable function and let xo be a point on the level surface
S={xeR" | f(x) =k}

Then V f(xo) is normal to the surface S at the point X in the following sense: if v is the tangent vector al
t =0 to any curve y(t) that lies within S and salisfies v(t) =0, then v - Vf(xg) = 0.

Proof. Let v(t) be such a curve. Since (¢) lies in § for all ¢ we must have

f((@) =k
Therefore,
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Because the gradient of f at the point xg is perpendicular to the tangent vector at x¢ to any curve (¢) that
lives in a level surface S = {x € R™ | f(x) = k} it is reasonable to define the plane tangent to the surface
S at the point xg in terms of the gradient.

DEFINITION 8.9. Let f : R® — R be a diffetentiable function and let S be a surface in R™ of the form
S={x eR"| f(x) =k}, the the tangent plane to S at the point x¢ is defined by the equation

Vi(xo) (x—%0)=0



