
LECTURE 8

Directional Derivatives and the Gradient

In this lecture we specialize to the case where f : R
n
→ R is a real-valued function of several variables. For

such a function the differential Df reduces to an 1×n matrix, or equivalently an n-dimensional vector. In

fact we have

Df =

(
∂f

∂x1

∂f

∂x2
· · ·

∂f

∂xn

)
=

(
∂f

∂x1
,
∂f

∂x2
, · · · ,

∂f

∂xn

)
≡ ∇f

so Df can be identified with the gradient of f .

We’ll come back to the gradient in a minute. But first let me introduce the notion of directional

derivatives.

Definition 8.1. Let f be a function from R
n toR, and let u be a unit vector in Rn (i.e, a vector of length

1). Then the directional derivative of f in the direction u at the point x is the limit

D
u
f(x) ≡

d

dt
f (x+ tu)

∣
∣
∣
∣
t=0

≡ lim
t→0

f (x + tu)− f (x)

t

The directional derivative of f : Rn → R along the direction u at the point x is interpretable as the rate of

change in f as one moves away from the point x in the direction of u.

Remark 8.2. We restrict u to be a unit vector because most often we’re interested only in how a function

changes when we move in different directions. Since, we care only about the direction of u and not its

magnitude; we simply fix its magnitude to be 1.

Example 8.3. Compute the rate of change of f : (x, y, z) �→ x
2
yz in the direction u =

(
1√
3
,

1√
3
,−

1√
3

)
at

the point (1,1,0).

1
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We need to compute

Duf(x) =
d

dt
f

(
(1,1,0) + t

(
1√
3
,
1√
3
,− 1√

3

))∣∣∣∣
t=0

=
d

dt
f

(
1 +

1√
3
t, 1 +

1√
3
t,0− 1√

3
t

)∣∣∣∣
t=0

=
d

dt

((
1+

t√
3

)2(
y\1 + t√

3

)(
− t√

3

))∣∣∣∣∣
t=0

=

(
2

(
1+

t
√
3

)(
1
√
3

)(
1 +

t
√
3

)(
−

t
√
3

))∣∣∣∣
t=0

+

((
1+

t
√
3

)2(
1
√
3

)(
−

t
√
3

))∣∣∣∣∣
t=0

+

((
1+

t
√
3

)2(
1 +

t
√
3

)(
−

1
√
3

))∣∣∣∣∣
t=0

= (2)

(
1
√
3

)
(1)(0)

+ (1)
2

(
1
√
3

)
(0)

+ (1)
2
(1)

(
−

1
√
3

)

= −
1
√
3

Below we give a theorem that makes computations such as the one above a lot simpler.

Theorem 8.4. If f : Rn → R is differentiable then all directional derivatives exist and, moreover, the

directional derivative of f in the direction u at the point x is given by

∇f(x) · u

Proof. Let γ : R→ R
n
be the function

γ(t) = x+ tu

so that

γ1(t) = x1 + tu1

γ2(t) = x2 + tu2

.

.

.

γn(t) = xn + tun

and

f (x + tu) = f (γ(t))
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By the chain rule we have

Duf(x) =
d

dt
f (x+ tu)

∣
∣
∣
∣
t=0

=
d

dt
(f ◦ γ)

∣∣∣∣
t=0

= D (f ◦ γ)|
t=0

=Df (γ(0))Dγ(0)

=

(
∂f

∂x1
(γ(0))

∂f

∂x2
(γ(0)) · · ·

∂f

∂xn
(γ(0))

)



dγ1
dt

(0)

dγ2
dt

(0)

.

.

.

dγn
dt

(0)




=

(
∂f

∂x1
(x)

∂f

∂x2
(x) · · ·

∂f

∂xn
(x)

)



u1
u2
.
.
.

un




=
∂f

∂x1
(x)u1 +

∂f

∂x2
(x)u2 + · · ·+

∂f

∂x
n

(x)un

=

(
∂f

∂x1
(x),

∂f

∂x2
(x), · · · ,

∂f

∂xn
(x)

)
· (u1, u2, . . . , un)

=∇f(x) ·u

Example 8.5. Let’s return to the preceding example and use our spanking new formula to compute the

directional derivative of f(x, y, z) = x
2
yz along the direction u =

(
1√
3
,

1√
3
,−

1√
3

)
at the point (1,1,0).

∇f(1, 1,0) =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)∣∣∣∣
(1,1,0)(

2xyz, x
2
z, x

2
y
)∣∣

(1,1,0)

= (0, 0, 1)

So

d

dt
f ((1,1, 0) + tu)

∣∣∣∣
t=0

= ∇f(1,1, 0) · u

= (0,0,1) ·
(

1√
3
,

1√
3
,− 1√

3

)

= − 1√
3

The gradient ∇f not only makes the computation of directional derivatives easier, it also makes it easy to

identify the direction in which a function increases most rapidly:

Theorem 8.6. Let f : Rn → R be a differentiable function and assume that ∇f(x) �= 0. Then the direction

of ∇f(x) coincides with the direction in which f(x) is increasing most rapidly.

Proof. We want to determine the direction u in which a directional derivative

Duf(x) =
d

dt
f (x+ tu)

∣
∣
∣
∣
t=0
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is maximized. Using the preceding theorem we have

Duf(x) = ∇f(x) · u

= ‖∇f(x)‖ ‖u‖ cos(θ)

where θ is the angle between ∇f(x) and u. Since u is, by definition, a unit vector ‖u‖ = 1 and so

d

dt
f (x + tu)

∣
∣
∣
∣
t=0

= ∇f(x) cos(θ)

The right hand side is obviously maximized when θ = 0; i.e. when u points in the same direction as ∇f(x).

Remark 8.7. Another way of phrasing the result of this theorem is that, when one imagines the graph of

f as a surface with hilltops and valleys, the direction of the ∇f(x) corresponds to the direction uphill at

the point x.

Here is another application of the gradient.

Theorem 8.8. Let f : Rn → R be a differentiable function and let x0 be a point on the level surface

S = {x ∈ R
n

| f(x) = k}

Then ∇f(x0) is normal to the surface S at the point x0 in the following sense: if v is the tangent vector at

t = 0 to any curve γ(t) that lies within S and satisfies γ(t) = 0, then v · ∇f(x0) = 0.

Proof. Let γ(t) be such a curve. Since γ(t) lies in S for all t we must have

f (γ(t)) = k

Therefore,

0 =
d

dt
(f ◦ γ)

∣∣∣∣
t=0

=Df(γ(0)Dγ(0)

=

(
∂f

∂x1
(x0)

∂f

∂x2
(x0) · · ·

∂f

∂xn
(x0)

)



dγ1
dt

(0)

dγ2
dt

(0)

.

.

.

dγ
n

dt
(0)




=

(
∂f

∂x1
(x0)

∂f

∂x2
(x0) · · ·

∂f

∂xn
(x0)

)



v1

v2

.

.

.

v
n




=∇f(x0) · v

Because the gradient of f at the point x0 is perpendicular to the tangent vector at x0 to any curve γ(t) that

lives in a level surface S = {x ∈ Rn | f(x) = k} it is reasonable to define the plane tangent to the surface

S at the point x0 in terms of the gradient.

Definition 8.9. Let f : R
n → R be a diffetentiable function and let S be a surface in R

n
of the form

S = {x ∈ Rn | f(x) = k}, the the tangent plane to S at the point x0 is defined by the equation

∇f(x0) · (x − x0) = 0


