
LECTURE 6

Partial Derivatives and Differentiability

1. Partial Derivatives

Definition 6.1. Let f : U ⊂ R
n
→ R be a real-valued function. Then the i

th
partial derivative is the

real-valued function

∂f

∂xi
(x) = lim

h→0

f (x + hei)− f(x)

h

= lim
h→0

f(x1, . . . , xi−1, xi + h,xi+1, . . . , xn)− (x1, . . . , xi−1, xi, xi+1, . . . , xn)

h

Remark 6.2. Note that limit used in the above definition is just the limit of a function of a single variable.

Indeed, fix x = (x1, . . . , xi−1, xi, xi+1, . . . , xn) and define

F (h) = (x1, . . . , xi−1, h, xi+1, . . . , xn)

Then

∂f

∂xi
(x) = lim

h→0

F (xi + h)−F (xi)

h
≡

dF

dh

∣
∣
∣
∣
h=xi

This observation in fact tells us precisely how to compute the i
th

partial derivative of f . We regard all

the coordinates except xi to be fixed (i.e., constants) and then use ordinary calculus to differentiate the

resulting function of xi (regarded as a function of a single variable).

Example 6.3. Let f(x, y) = cos(x
2
y
2
). Then

∂f

∂x
= − sin(x2y2)(2xy2)

∂f

∂y
= − sin(x2y2)(2x2y)

The ordinary derivative
df

dx
of a function f of a single variable x tells us the rate of change of a function as

x increases. Similarly, the partial derivative is interpretable as a rate of change: the partial derivative

∂f

∂xi
(x)

is the rate at which the function f changes as one moves away from the point x in the direction ei.

2. Differentiability of Functions of Several Variables

Recall that in the case of a function of a single variable, a function f(x) is differentiable only if it is

continuous; but that continuity does not guarantee differentiability. Intuitively, continuity of f(x) requires

that its graph be a continuous curve; and differentiability requires also that there is always a unique tangent

vector to the graph of f(x). In other words, a function f(x) is differentiable if and only if its graph is a

smooth continuous curve with no sharp corners (a sharp corner would be a place where there would be two

possible tangent vectors).
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If we try to extend this graphical picture of differentiability to functions of two or more variables, it would be

natural to think of a differentiable function of several variables as one whose graph is a smooth continuous

surface, with no sharp peaks or folds. Because for such a surface it would always be possible to associate a

unique tangent plane at a given point.

However, “differentiability” in this sense turns out to be a much stronger condition than the mere existence

of partial derivatives. For the existence of a partial derivatives at a point x0 requires only a smooth approach

to the point f(x0) along the direction of the coordinate axes. We have seen examples of functions that

are discontinuous even though

lim
x→0

f(x,0) = lim
y→0

f(0, y)

both exist. For example the function

f(x, y) =
(x− y)2

x2 + y2

has this property, and in fact, both
∂f
∂x

and
∂f
∂y

exist and are continuous functions at the point (0, 0).

With this sort of phenomenon in mind we give the following definition of differentiability.

Definition 6.4. We say that a function f : R2
→ R of two variables x and y is differentiable at (x0, y0)

if

1. Both
∂f
∂x

and
∂f
∂y

exist at the point (x0, y0).
2.

lim
(x,y)→(x0,y0)

f(x, y)− f(x0, y0)−
[
∂f
∂x

(x0, y0)

]
(x− x0) −

[
∂f
∂y

(x0, y0)

]
(y − y0)

|(x− x0)
2 + (y − y0)

2|
1

2

= 0

Remark 6.5. The limit condition simply means that

F (x, y) = f(x0, y0) +
∂f

∂x

∣
∣
∣
∣
(x0,y0)

(x− x0) +
∂f

∂y

∣
∣
∣
∣
(x0,y0)

(y − y0)

is a good approximation to f(x, y) near the point (x0, y0). To make contact with our graphical interpretation

of differentiability, we simply note that the graph of F (x, y) is a plane (it is linear in the variables x and y).

To make this completely obvious, recall that the solution set of any equation of form

Ax+By +Cz = D

is a plane in R
3; so taking

A = −

∂f

∂x

∣
∣
∣
∣
(x0,y0)

B = −

∂f

∂y

∣
∣
∣
∣
(x0,y0)

C = 1

D = f(x0, y0)−

[
∂f

∂x

∣∣∣∣
(x0,y0)

]
x0 −

[
∂f

∂y

∣∣∣∣
(x0,y0)

]
y0

we see that the equation of the graph of F (x, y)

z = F (x, y) = −Ax−By +D

is a plane. Thus the limit condition is saying that the graph of f(x, y) coincides with the graph of a plane

as (x, y) approaches the point (x0, y0). This observation motivates the following definition.
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Definition 6.6. Let f : R
2
→ R be a function that is differentiable at the point x0 = (x0, y0). Then the

plane in R
3
defined by the equation

z = f(x0, y0) +
∂f

∂x

∣
∣
∣
∣
(x0,y0)

(x− x0) +
∂f

∂y

∣
∣
∣
∣
(x0,y0)

(y − y0)

is called the plane tangent to the graph of f at x0.

In order to generalize these definitions to the case of a function from R
n to Rm it suffices to simply generalize

our notation.

Definition 6.7. If f is any function from R
n
to R we define the gradient ∇f of f to be the function

from R
n to Rn defined by

∇f(x) =

(
∂f

∂x1
(x),

∂f

∂x2
(x), . . . ,

∂f

∂xn
(x)

)

Of course, for this definition to make sense all the partial derivatives
∂f

∂x1
(x), , . . . ,

∂f

∂xn
(x) must exist.

Definition 6.8. Let U be an open set in R
n and let f be a function from U to R. We say that f is

differentiable at a point x0 ∈ U if the partial derivatives

∂f

∂xi
(x0) = lim

h→0

f (x0 + hei) − f(x0)

h

all exist and if

0 = lim
x→x0

f(x)− f(x0) −∇f(x0) · (x− x0)

‖x− x0‖

We can also extend our notion of differentiability to functions from R
n
to R

m
.

Definition 6.9. Let U be an open set in R
n and let f be a function from U to R. We say that f is

differentiable at a point x0 ∈ U if the partial derivatives

∂fj

∂xi
(x0) = lim

h→0

fj (x0 + hei) − fj(x0)

h

all exist and

0 = lim
x→x0

∥
∥
∥f(x) − f(x0)−

∑n

j=0∇fj(x0) · (x− x0)ej

∥
∥
∥

‖x− x0‖

Example 6.10. Let f(x, y) = (xy, x+ y). Then

T (x, y) =

(
∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

)
=

(
y x

1 1

)

and so for f to be differentiable at (1,0) we require

0 = lim
x→x0

∥∥∥f(x)− f(x0) −
∑n

j=0∇fj(x0) · (x− x0)ej

∥
∥
∥

‖x− x0‖

= lim
x→x0

‖f(x) − f(x0)− (∇f1(x0) · (x− x0),0)− (0,∇f2(x0) · (x− x0))‖

‖x− x0‖
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Now

f(x) = (xy, x+ y)

f(x0) = f(1, 0) = (0,1)

∇f1 =

(
∂

∂x
(xy),

∂

∂y
(xy)

)
= (y,x) ⇒ ∇f1(x0) =∇f1(1,0) = (0, 1)

∇f2 =

(
∂

∂x
(x+ y),

∂

∂y
(x+ y)

)
= (1,1) ⇒ ∇f2(x0) = ∇f2(1, 0) = (1,1)

∇f1(x0) · (x− x0) = (0,1) · (x− 1, y − 0) = y

∇f2(x0) · (x− x0) = (1,1) · (x− 1, y − 0) = x− 1 + y

Hence the limit condition becomes

0 = lim
(x,y)→(1,0)

‖(xy, x+ y)− (0,1)− (y,0)− (0, x− 1 + y)‖

‖(x− 1, y‖

= lim
(x,y)→(1,0)

‖(xy − 0− y − 0, x+ y − 1− 0− x+ 1− y)‖

‖(x− 1, y‖

= lim
(x,y)→(1,0)

‖(xy − y,0)‖

‖(x− 1, y‖

= lim
(x,y)→(1,0)

√
(xy − y)2

√
(x− 1)2 + y2

Unfortunately as we have seen in the examples we discussed in the lecture on limits and continuity, it is not

so easy to see whether or not this limit exists. Luckily we have a theorem at our disposal that makes it a

lot easier to decide questions of differentiability.

Theorem 6.11. Let f : U ⊂ R
n
→ R

m
. Suppose that the derivatives

∂fj
∂xi

all exist and are continuous on a

neighborhood of a point x in U . Then f is differentiable at x.


