
LECTURE 5

Limits of Real-Valued Functions

1. Topology of R
n

Fundamental to an understanding of the functions of single variable is the notion of an open interval

(a, b) = {x ∈ R | a < x < b}. The first step in developing a calculus for functions of several variables is to

develop a higher dimensional analog of the open interval. For, just as in the case of a function of a single

variable, the limit of a function f : R
n → R, say at a point p ∈ Rn will depend not so much on the value

of the f at p, but rather on the values of f at points “close” to p. This is why we must first explain what

it means to be “close” to a given point.

Definition 5.1. An open ball of radius r about a point p0 in Rn is the set of points Br (p0) defined by

Br (p0) = {p ∈ Rn | ‖p−p0‖ < r}

(i.e. the set of all points within distance r of the point p0).

Remark 5.2. We shall often call an open ball about a point p0 in R
n
a neighborhood of p0.

Definition 5.3. Let U be a subset of R
n
. We say that U is a open subset if for every point p0 ∈ U there

exists an open ball of radius r > 0 about p0 lying completely within U .

Remark 5.4. This is the analog of an open interval on the real line. The main ideas being that such a set

U does not include its boundary, and given any point in the set there’s always another point even closer to

the boundar of U . Below we make our notion of boundary a little more precise.

Definition 5.5. Let U be a subset of Rn
. A point p0 ∈ R

n
is called a boundary point of U if every open

ball B
r
(p0) about p0 contains at least one point in U and one point not in U .

Note that this definition does not imply that a boundary point of U is necessarily a point in U . We shall

denote by ∂U the set of boundary points of U .

Theorem 5.6. For each point p0 ∈ R
n, and any r > 0 the open ball Br (p0) is an open set in R

n
.

proof. Let p1 ∈ Br (p0). Then ‖p1 −p0‖ < r. According to the definition of an open set we need to

demonstrate that there is an open ball about the point p1 that is contained entirely within B
r
(p0). Set

s = r − ‖p− p0‖

so that

r = s+ ‖p− p0‖

Then for any point p ∈ Bs (p1) we have

‖p−p1‖ < s

But then

‖p− p0‖ = ‖(p−p1) + (p1 −p0)‖

≤ ‖p−p1‖+ ‖p1 −p0‖ (by the Triangle Inequality)

< s+ ‖p1 − p0‖

< r

1



2. LIMITS OF REAL-VALUED FUNCTIONS 2

Hence p also lies in B
r
(p0).

2. Limits of Real-Valued Functions

We introduced the notion of open balls about a point p so that we could obtain a precise way of identifying

the points that are neighboring p0. We can now introduce the notion of limit.

Remark 5.7. Definition 5.8. Let S be an open subset of R
n
and let x0 be a point in S or the boundary

of S. Let f be a function from S to Rm.

1. If N is a neighborhood of a point y0 ∈ R
m

, we say that f is eventually in N as x approaches x0

if there exists a neighborhood U of x0 in S such that

x ∈ U , x 	= x0 , x ∈A ⇒ f(x) ∈ N .(5.1)

2. We say that

lim
x→x0

f(x) = y0

or

f(x)→ y0 as x→ x0

if, given any neighborhood N of y0 there f is eventually in N as x approaches x0.

Remark 5.9. The reason why we don’t simply require x ∈ U ⇒ f(x) ∈ N is that this

condition by itself is too restrictive. For unless we also stipulate that x 	= x0 we can not take limits

of (derivative-like) functions of the

f(x) =
g(x) − g(x0)

‖x − x0‖

since the right hand side of (5.1) is undefined when x = x0. For the same reason we also require x

to be in the domain A of the function f (a neighborhood U of a point near the boundary of A could

very well contain points which are not in A; i.e., points where the function f is undefined.)

Example 5.10. Show that

lim
x→x0

x = x0

• Let f : R
n
→ R

n be the function mapping a point x to itself and let N be some ball of radius r about

the point f(x0) = x0. To show that f is eventually in N we need to find a neighborhood U of point

x0 (regarded as a point in the domain of f) such that if x ∈ U then f(x) ∈ N . Well, that’s easy
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enough, simply take U = N; then if x ∈ U , f(x) = x is guaranteed to be in N. So f is eventuall in

N as x approaches x0. Since our choice of the neighborhood N is arbitrary, we can conclude that

lim
x→x0

x = x0

Theorem 5.11. (Properties of Limits): Let f, g be any functions from a subset A of R
n

to

Rm.

1. If limx→x0
f(x) = b1 and limx→x0

f(x) = b2 then b1 = b2. (Limits are unique.)

2. If limx→x0
f(x) = b, then limx→x0

(cf(x)) = cb.

3. If limx→x0
f(x) = b1 and limx→x0

g(x) = b2, then limx→x0
(f(x) + g(x)) = b1 +b2.

4. If m = 1 and limx→x0
f(x) = b1 and limx→x0

g(x) = b2, then limx→x0
(f(x)g(x)) = b1b2.

5. If m = 1 and lim
x→x0

f(x) = b 	= 0 , then lim
x→x0

(1/f(x)) = 1/b.

6. If f(x) = (f1(x), f2(x), . . . , fn(x)) where f1 : A → R, . . . , fm : A → R are the components

functions of f , then

lim
x→x0

f(x) = b =(b1, . . . , bm)

if and only if

lim
x→x0

fi(x) = bi

for each i = 1, . . . ,m.

Theorem 5.12. (Criterion for a limit to exist.). Suppose f : R
n
→ R is a real-valued

function and

lim
x→x0

f(x) = L

exists, then if γ : R→ R
n is any smooth curve in Rn such that γ(0) = x0, then

lim
t→0

f(γ(t)) = L

This theorem tells us that if f is a function of several variables and a limit limx→x0
f(x) exists then we can

compute the limit by choosing a path γ(t) passing through the limit point x0 and calculating the limit of

a function of a single variable (F (t) = f (γ(t))). However, if a limit

lim
x→x0

f(x)

does not exist, this theorem does not necessarily help us see the limit does not exist.

Example 5.13. Consider the function

f(x, y) =
x2 − y2

x2 + y2

There is some hope that

lim
(x,y)→(0,0)

f(x, y)
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exists since the only place where the denominator vanishes is the point (0,0); but there the numerator

vanishes as well. Let’s assume the limit exists and calculate by considering the path

γ
1
: t �→ (t,0)

along the x-axis. We then have

f(γ1(t)) =
t2 − 02

t2 + 02
= 1

and so if the limit exists

lim
x→x0

f(x) = lim
t→0

f(γ
1
(t)) = lim

t→0

1 = 1

However, consider instead a path along the y-axis

γ
2
: t �→ (0, t)

we have

f (γ
2
(t)) =

02 − t2

02 + t2
= 1

and so by the preceding theorem if the limit limx→x0
f(x) exists we must also have

lim
x→x0

f(x) = lim
t→0

f(γ
2
(t)) = lim

t→0

−1 = −1

But this contradicts the calculation of the limit using the path γ
1
(t). We conclude that the limit limx→x0

f(x)

does not exist.

Example 5.14. Consider the function

f(x, y) =
xy2

x2 + y4

Let’s try to be a little more clever this time and try to compute the limit

lim
x→x0

f(x)

by considering a whole family of straight lines passing through the origin. Set

γ
m
(t) = (t,mt)

For any given m this will correspond to a straight line passing through (0,0) with slope m. We now

calculate the limit of the values of f along such a path

lim
t→0

f (γ
m
(t)) = lim

t→0

t(mt)2

(t)2 + (mt)4
= lim

t→0

tm2

1 +m4t2
= 0

since the denominator tends to 1 as t → 0 while the numerator goes to zero. We can conclude that if we

approach the origin along any line the the limit of the values of f is always 0. Is this sufficient to conclude

lim
x→x0

xy2

x2 + y4
= 0 ?

Let’s consider one other curve

γ : t �→ (t2, t)

This will be a (sideways) parabola that passes through the origin at t = 0. Calculating the limit of the

values of f along this curve yields

lim
t→0

f(γ(t)) = lim
t→0

(t2)(t2)

(t2)2 + (t)4
= lim

t→0

1

2
=

1

2
	= 0

Since the limit along this parabolic curve does not agree with the limits we obtained by looking at straight

lines we must conclude that the limit

lim
x→x0

f(x)

does not exist.



3. CONTINUOUS FUNCTIONS 5

Remark 5.15. The moral of these two examples is that while it can be helpful to look at the values of

a function along a curve in order to compute a limit, it is in general not sufficient to use these values to

determine if the limit actually exists.

3. Continuous Functions

Definition 5.16. Let f : A ⊂ R
n
→ R

m
be a function with domain A. Let x0 ∈ A. We say that f is

continuous at x0 if

1. limx→x0
f(x) exists

2. limx→x0
f(x) = f(x0).

We say that the function f is continuous if f is continuous at each point x in its domain.

Remark 5.17. Recall that for a function f(x) of a single variable is continuous if its graph is an unbroken

curve. Similarly, a funciton f(x) of several variables is continuous if it is an unbroken surface (i.e., a surfaces

without holes or tears)

Let me conclude this lecture by stating some fundamental properties of continuous functions.

Theorem 5.18. Suppose f : A ⊂ Rn → R
m

and g : A ⊂ R
n
→ R

m
are continuous functions. Then so are

1. cf(x) , where c is any constant.

2. f(x) + g(x)

3. f(x) · g(x)

Theorem 5.19. Suppose f : Rn → R
m is continuous and g : Rm → R

p is continuous then so is the

composed function g ◦ f : Rn → R
p

Theorem 5.20. Suppose f : A ⊂ Rn → R is continuous and nowhere zero on A. Then the quotient 1/f(x)
is continuous.

Theorem 5.21. Suppose f : A ⊂ Rn → R
m

and

f(x) = (f1(x), f2(x), . . . , fm(x))

Then f is continuous if and only if each

fi : A ⊂ Rn → R

is continuous.


