LECTURE 5

Limits of Real-Valued Functions

1. Topology of R™

Fundamental to an understanding of the functions of single variable is the notion of an open interval
(a,0) = {x € R | a < z < b}. The first step in developing a calculus for functions of several variables is to
develop a higher dimensional analog of the open interval. For, just as in the case of a function of a single
variable, the limit of a function f : R™ — R, say at a point p € R™ will depend not so much on the value
of the f at p, but rather on the values of f at points “close” to p. This is why we must first explain what
it means to be “close” to a given point.

DEFINITION 5.1. An open ball of radius v about a point po in R™ is the sel of points B, (po) defined by
By (po) ={p € R" | [|[p — pol| <7}

(i.e. the sel of all points within distance r of the point po).

REMARK 5.2. We shall often call an open ball about a point pg in R" a neighborhood of pg.

DEFINITION 5.3. Let U be a subset of R™. We say that U is a open subset if for every point pg € U there
exists an open ball of radius r > 0 aboul py lying completely within U.

REMARK 5.4. This is the analog of an open interval on the real line. The main ideas being that such a set
U does not include its boundary, and given any point in the set there’s always another point even closer to
the boundar of UU. Below we make our notion of boundary a little more precise.

DEFINTTION 5.5. Let U be a subset of R*. A poinl pg € R™ is called a boundary point of U if every open
ball B, (po) about po contains at least one point in U and one point not in U.

Note that this definition does not imply that a boundary point of U is necessarily a point in U. We shall
denote by QU the set of boundary points of U.

THEOREM 5.6. For each point po € R", and any r > 0 the open ball B, (po) is an open set in R™.

proof. Let p1 € B, (po). Then ||p1 — po|| < 7. According to the definition of an open set we need to
demonstrate that there is an open ball about the point p; that is contained entirely within B, (pg). Set

s=r—|p—pol
so that
r=s+|p—pol
Then for any point p € B; (p1) we have
[P —pill <s
But then
lp—poll = [l(p—pP1)+(P1—Po)ll
< |lp—pill +|lpr —pol| (by the Triangle Inequality)
< s+[p1—poll
< r
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Hence p also lies in B,.(po).

2. Limits of Real-Valued Functions

We introduced the notion of open balls about a point p so that we could obtain a precise way of identifying
the points that are neighboring pg. We can now introduce the notion of limit.

REMARK 5.7. DEFINITION 5.8. Lel S be an open subset of R"™ and let x¢ be a point in S or the boundary
of S. Let f be a function from S to R™.
1. If N is a neighborhood of a poinl yo € R™ | we say that f is eventually in N as x approaches Xq
if there exists a neighborhood U of x¢ in S such that
(5.1) xeU,x#x9,x€A = f(x)eN.
2. We say that

lim f(x) =yo
X—X0
or
f(x) = y0 as x — Xo

if, given any neighborhood N of yo there f is eventually in N as X approaches Xg.
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REMARK 5.9. The reason why we don’t simply require x € U = f(x) € N is that this
condition by itself is too restrictive. For unless we also stipulate that x #£ x¢ we can not take limits
of (derivative-like) functions of the

f(x) = 9(x) — g(x0)
[l — o

since the right hand side of (5.1) is undefined when x = xg. For the same reason we also require x
to be in the domain A of the function f (a neighborhood U of a point near the boundary of A could
very well contain points which are not in A; i.e., points where the function f is undefined.)

ExAMPLE 5.10. Show that

Iim x = xg
X—Xo

e Let f: R™ — R™ be the function mapping a point x to itself and let IV be some ball of radius r about
the point f(xg) = x¢. To show that f is eventually in N we need to find a neighborhood U of point
xo (regarded as a point in the domain of f) such that if x € U then f(x) € N. Well, that’s easy
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enough, simply take U = N; then if x € U, f(x) = x is guaranteed to be in N. So f is eventuall in
N as x approaches Xg. Since our choice of the neighborhood IV is arbitrary, we can conclude that
Iim x = xg
X—X0
THEOREM 5.11. (Properties of Limits): Lel f,g be any functions from a subset A of R™ to
R™.
- If limg .k, f(x) = by and limx_.x, f(x) = ba then by = ba. (Limils are unique.)
. If limx i, f(x) = b, then limx_.x, (cf(x)) = cb.
If limx .k, f(x) = by and limx_.x, g(x) = ba, then limx_.x, (f(x) + g(x)) = by + ba.
S Ifm =1 and limx_.x, f(X) = b1 and limx_.x, g(X) = ba, then limx_.x, (f(x)g(x)) = b1ba.
CIfm =1 and limg .5, f(x) =b# 0, then limy ., (1/f(x)) = 1/b.
S f(x) = (A(x), fo(%), ..., fu(x)) where f1 - A =R, ..., f;y : A — R are the components
functions of f, then

SO = W N~

lm f(x)=b=(by,...,bm)

X— X0
if and only if
lim fi (X) = bi

X— X0
foreachi=1,... ,m.

THEOREM 5.12. (Criterion for a limit to exist.). Suppose f : R" — R s a real-valued
function and

lim f(x)=L

X— X0

exists, then if v: R — R™ is any smooth curve in R™ such that v(0) = xq, then

limy f(3(1)) = L

()

t ) R

L
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This theorem tells us that if f is a function of several variables and a limit limx_.x, f(x) exists then we can
compute the limit by choosing a path () passing through the limit point x¢ and calculating the limit of
a function of a single variable (F(¢) = f (v(¢))). However, if a limit

lim f(x)

X—X0

does not exist, this theorem does not necessarily help us see the limit does not exist.

ExaMPLE 5.13. Consider the function

22— y?
fl2,y) = o
There is some hope that
lim x,
(z,9)—(0,0) fv)
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exists since the only place where the denominator vanishes is the point (0,0); but there the numerator
vanishes as well. Let’s assume the limit exists and calculate by considering the path
vy 1t — (£,0)
along the x-axis. We then have
2 — 02

f(n (@) = P

and so if the limit exists
Jim (60 = lim f(n (1) = im1 =1
However, consider instead a path along the y-axis
Yo 1 t— (0,1)

we have
02 _ t2

FOM)=Gaz =
and so by the preceding theorem if the limit limx_,x, f(X) exists we must also have
lim f(x)=1lim f(v,(#)) =lim -1 = -1
X—X0 t—0 t—0

But this contradicts the calculation of the limit using the path v, (£). We conclude that the limit limy_,x, f(X)
does not exist.

ExaMPLE 5.14. Consider the function
2

-
f(.’Ihy) - x2+y4

Let’s try to be a little more clever this time and try to compute the limit

lim f(x)

X—X0

by considering a whole family of straight lines passing through the origin. Set
Y () = (t,mi)

For any given m this will correspond to a straight line passing through (0,0) with slope m. We now
calculate the limit of the values of f along such a path
: , t(mt)? , tm?
}g%f(’)/m(t)) - }g% (t)2 + (mt)4 - %E% 14+ mae2 0
since the denominator tends to 1 as ¢ — 0 while the numerator goes to zero. We can conclude that if we
approach the origin along any line the the limit of the values of f is always 0. Is this sufficient to conclude
2
x
lim — 20— =0 ?
X—Xo L —|—y4

Let’s consider one other curve
vt (t21)

This will be a (sideways) parabola that passes through the origin at £ = 0. Calculating the limit of the
values of f along this curve yields
: T (ol ) N B |
}g% J(v(@®) = }E% (2)2 + (1) }E% 2 9 #0
Since the limit along this parabolic curve does not agree with the limits we obtained by looking at straight
lines we must conclude that the limit
lim f(x)

X—X0

does not exist.
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REMARK 5.15. The moral of these two examples is that while it can be helpful to look at the values of
a function along a curve in order to compute a limit, it is in general not sufficient to use these values to
determine if the limit actually exists.

3. Continuous Functions

DEFINTTION 5.16. Let f : A C R™ — R™ be a function with domain A. Lel xg € A. We say that f is
continuous at xo if

1. lmy ., f(x) ezists
2. limx_x, f(x) = f(x0).

We say that the function f is continuous if f is continuous at each point X in its domain.

REMARK 5.17. Recall that for a function f(z) of a single variable is continuous if its graph is an unbroken
curve. Similarly, a funciton f(x) of several variables is continuous if it is an unbroken surface (i.e., a surfaces
without holes or tears)

Let me conclude this lecture by stating some fundamental properties of continuous functions.

THEOREM 5.18. Suppose f : ACR™ - R™ and g: A CR" — R™ are conlinuous functions. Then so are

1. ¢f(x) , where ¢ is any constant.
2. f(x) +9(x)
3. f(x) - 9(x)
THEOREM 5.19. Suppose f : R®™ — R™ is continuous and g : R™ — RP is continuous then so is the
composed function go f : R™ — RP
THEOREM 5.20. Suppose f: A CR™ — R is continuous and nowhere zero on A. Then the quotient 1/ f(x)
18 continuous.
THEOREM 5.21. Suppose f : A CR™ — R™ and

f(x) = (fi(x), fo(x), ..., fn(x))
Then f is continuous if and only if each

fi ACR® =R

18 conlinuous.



