LECTURE 3

Vectors and Vector Spaces, Cont'd

1. Additional Properties of Dot Products

THEOREM 3.1. For any $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ and any $\alpha, \beta \in \mathbb{R}$

1. $(\alpha \mathbf{u} + \beta \mathbf{v}) \cdot \mathbf{w} = \alpha(\mathbf{u} \cdot \mathbf{w}) + \beta(\mathbf{v} \cdot \mathbf{w})$ 2. $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$ 3. $\mathbf{u} \cdot \mathbf{u} \ge 0$ 4. $\mathbf{u} \cdot \mathbf{u} = 0 \implies \mathbf{u} = \mathbf{0}, \text{ where } \mathbf{0} \equiv (0, 0, 0)$

THEOREM 3.2. (Cauchy-Schartz Inequality) If $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, then

$$|\mathbf{u} \cdot \mathbf{v}| \le |\mathbf{u}| |\mathbf{v}|$$

proof: Let $a = \mathbf{v} \cdot \mathbf{v}$ and $b = -\mathbf{u} \cdot \mathbf{v}$. If a = 0 then $\mathbf{v} \cdot \mathbf{v} = 0$, hence $\mathbf{v} = \mathbf{0}$ by the first theorem above. The inequality is thus trivially satisfied since both sides vanish identically when $\mathbf{v} = (0, 0, 0)$. Now suppose $a \neq 0$. By the preceding theorem we have

$$0 \leq |a\mathbf{u} + b\mathbf{v}| = (a\mathbf{u} + b\mathbf{v}) \cdot (a\mathbf{u} + b\mathbf{v})$$

= $a^{2}(\mathbf{u} \cdot \mathbf{u}) + 2ab(\mathbf{u} \cdot \mathbf{v}) + b^{2}(\mathbf{v} \cdot \mathbf{v})$
= $(\mathbf{v} \cdot \mathbf{v})^{2}(\mathbf{u} \cdot \mathbf{u}) - 2(\mathbf{v} \cdot \mathbf{v})(\mathbf{u} \cdot \mathbf{v})^{2} + (\mathbf{u} \cdot \mathbf{v})^{2}(\mathbf{v} \cdot \mathbf{v})$
= $(\mathbf{v} \cdot \mathbf{v})^{2}(\mathbf{u} \cdot \mathbf{u}) - (\mathbf{v} \cdot \mathbf{v})(\mathbf{u} \cdot \mathbf{v})^{2}$

Dividing the extreme sides by $a = (\mathbf{v} \cdot \mathbf{v})$ (which is allowed since we assuming at this point that $a \neq 0$), we obtain

$$0 \leq (\mathbf{v} \cdot \mathbf{v}) \ (\mathbf{u} \cdot \mathbf{u}) - (\mathbf{u} \cdot \mathbf{v})^2$$

or

$$\left(\mathbf{u}\cdot\mathbf{v}\right)^{2}\leq\left(\mathbf{v}\cdot\mathbf{v}
ight)\left(\mathbf{u}\cdot\mathbf{u}
ight)=\left|\mathbf{v}
ight|^{2}\left|\mathbf{u}
ight|^{2}$$

Taking the positive square root of both sides now yields the desired inequality.

THEOREM 3.3. (Triangle Inequality) If $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, then

$$|\mathbf{u} + \mathbf{v}| \le |\mathbf{u}| + |\mathbf{v}|$$

proof: By the preceding theorem

$$\mathbf{u} \cdot \mathbf{v} \le |\mathbf{u} \cdot \mathbf{v}| \le |\mathbf{u}| |\mathbf{v}|$$

Thus,

$$|\mathbf{u} + \mathbf{v}|^{2} = |\mathbf{u}|^{2} + 2\mathbf{u} \cdot \mathbf{v} + |\mathbf{v}|^{2} \le |\mathbf{u}|^{2} + 2|\mathbf{u}||\mathbf{v}| + |\mathbf{v}|^{2} = (|\mathbf{u}| + |\mathbf{v}|)^{2}$$

Taking the square root of both sides yields

$$|\mathbf{u} + \mathbf{v}| \le |\mathbf{u}| + |\mathbf{v}|$$