Math 4013 Homework Problems from Chapter 4

Section 4.2

4.2.1. Calculate the arc length of the following curves.

(a)
$$\sigma(t) = (6t, 3t^2, t^3)$$
 , $t \in [0, 1]$

(b) $\sigma(t) = (\sin(3t), \cos(3t), 2t^{3/2})$, $t \in [0, 1]$

4.2.2. Let σ be the path $\sigma(t) = (t, t \sin(t), t \cos(t))$. Find the arc length of σ between (0,0,0) and $(\pi, 0, -\pi)$.

Section 4.3

4.3.1. A particle of mass *m* moves along a path $\mathbf{r}(t)$ according to Newton's law in a force field $\mathbf{F} = -\nabla V$ on \mathbb{R}^3 , where *V* is a given potential energy function.

(a) Prove that in the energy along the trajectory

$$E = \frac{1}{2}m \|\mathbf{r}'(t)\|^2 + V(\mathbf{r}(t))$$

is constant in time.

(b) If the particle moves on an equipotential surface, show that its speed is constant.

4.3.2. Sketch a few flow lines of the vector field $\mathbf{F}(x,y) = (x,-y)$.

4.3.3. Let $\mathbf{c}(t)$ be a flow line of a gradient field $\mathbf{F} = -\nabla V$. Prove that $V(\mathbf{c}(t))$ is a decreasing function of t. Explain.

4.3.4. Sketch the gradient field $-\nabla V$ for $V(x, y) = (x + y) / (x^2 + y^2)$. Sketch the equipotential surface V = 1.

4.3.5. Show that $\sigma(t) = (e^{2t}, \ln |t|, 1/t)$ for $t \neq 0$ is a flow line of the velocity vector field $\mathbf{F}(x, y, z) = (2x, z, -z^2)$.

Section 4.4

4.4.1. Compute the curl, $\nabla \times \mathbf{F}$, of each of the following vector fields.

- (a) $\mathbf{F}(x, y, z) = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$
- (b) $\mathbf{F}(x, y, z) = yz\mathbf{i} + xz\mathbf{j} + xy\mathbf{k}$
- (c) $\mathbf{F}(x, y, z) = (x^2 + y^2 + z^2) (3\mathbf{i} + 4\mathbf{j} + 5\mathbf{k})$

4.4.2. Compute the divergence of each of the vector fields in Exercise 1.

4.4.3. Let
$$\mathbf{F}(x, y, z) = 3x^2y\mathbf{i} + (x^3 + y^3)\mathbf{j}$$
.

- (a) Verify that $\nabla \times \mathbf{F} = 0$.
- (b) Find a function f such that $\mathbf{F} = \nabla f$.
- (c) Is it true that for a vector field **F** such a function can exist only if $\nabla \times \mathbf{F} = 0$?

 $\mathbf{2}$

4.4.4. Show that $\mathbf{F} = y(\cos(x))\mathbf{i} + x(\sin(y))\mathbf{j}$ is not a gradient field.

Section 4.5

4.5.1. Suppose $\nabla \cdot \mathbf{F} = 0$ and $\nabla \cdot \mathbf{G} = 0$. Which of the following vector fields necessarily have zero divergence?

- (a) $\mathbf{F} + \mathbf{G}$
- (b) $\mathbf{F} \times \mathbf{G}$
- (c) $(\mathbf{F} \cdot \mathbf{G}) \mathbf{F}$

4.5.2 Prove the following identities.

- (a) $\nabla (\mathbf{F} \cdot \mathbf{G}) = (\mathbf{F} \cdot \nabla) \mathbf{G} + (\mathbf{G} \cdot \nabla) \mathbf{F} + \mathbf{F} \times (\nabla \times \mathbf{G}) + \mathbf{G} \times (\nabla \times \mathbf{F})$
- (b) $\nabla \cdot (\mathbf{F} \times \mathbf{G}) = \mathbf{G} \cdot (\nabla \times \mathbf{F}) \mathbf{F} \cdot (\nabla \times \mathbf{G})$
- (c) $\nabla \times (f\mathbf{F}) = f (\nabla \times \mathbf{F}) + \nabla f \times \mathbf{F}$

4.5.3. Let $\mathbf{F} = (2xz^2, 1, y^3 zx)$, $\mathbf{G} = (x^2, y^2, z^2)$, and $f = x^2 y$. Compute the following quantities.

- (a) ∇f
- (b) $\nabla \times \mathbf{F}$
- (c) $(\mathbf{F} \cdot \nabla) \mathbf{G}$
- (d) $\mathbf{F} \cdot (\nabla f)$
- (e) $\mathbf{F} \times \nabla f$

4.5.4. Let **F** be a general vector field. Does $\nabla \times \mathbf{F}$ have to be perpendicular to **F**.