Math 4013 Homework Problems for Chapter 2

Section 2.1

Sketch the level curves and graphs of the following functions:

 (a)

$$f: \mathbb{R}^2 \to \mathbb{R}$$
 , $(x,y) \mapsto x-y+2$

(b)

$$f: \mathbb{R}^2 \to \mathbb{R}$$
 , $(x,y) \mapsto -xy$

2. (a) Describe the behavior, as c varies, of the level curve f(x,y) = c for the function

$$f(x,y) = x^2 + y^2 + 1$$

3. Sketch or describe the level surfaces and a section of the graph of the following function:

$$f: \mathbb{R}^3 \to \mathbb{R}$$
; $(x, y, z) \mapsto -x^2 - y^2 - z^2$.

4. * Sketch or describe the surface in \mathbb{R}^3 corresponding to the equation

$$4x^2 + y^2 = 16$$

5. * Sketch or describe the surface in \mathbb{R}^3 corresponding to the equation

$$\frac{x}{4} = \frac{y^2}{4} + \frac{z^2}{9}$$

Section 2.2

1. * Show that the following subset of \mathbb{R}^2 is open.

$$B = \{(x, y) \in \mathbb{R}^2 \mid y > 0\}$$

- 2. * Prove that if U and V are neighborhoods of $\mathbf{x} \in \mathbb{R}^n$, then so are $U \cup V$ and $V \cap U$.
- Compute the following limits.
 (a)

(a)

$$\lim_{(x,y)\to(0,1)}x^3y$$

(b)

$$\lim_{(x,y)\to(0,1)}e^xy$$

(c)

 $\lim_{x \to 0} \frac{\sin^2(x)}{x}$

(d)*

$$\lim_{x \to 0} \frac{\sin^2(x)}{x^2}$$

4. Compute the following limits if they exist.

(a)

$$\lim_{(x,y)\to(0,0)} (x^2 + y^2 + 3)$$

(b)

$$\lim_{(x,y)\to(0,0)}\frac{xy}{x^2+y^2+2}$$

$$\lim_{(x,y)\to(0,0)}\frac{e^{xy}}{x+1}$$

(d)

(c)

$$\lim_{(x,y)\to(0,0)}\frac{\cos(x)-1-\frac{x^2}{2}}{x^4+y^4}$$

(e)

$$\lim_{(x,y)\to(0,0)}\frac{(x-y)^2}{x^2+y^2}$$

5. Show that the map

$$f: \mathbb{R} \to \mathbb{R}, \quad x \mapsto \frac{x^2 e^x}{2 - \sin(x)}$$

is continuous.

Section 2.3

- 1. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ for each of the following functions. (a) f(x,y) = xy.
 - (b) $f(x,y) = x \cos(x) \cos(y)$.
- 2. Evaluate $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ for the function $z = \log \left[\sqrt{1+xy}\right]$ at the points (1,2) and (0,0). 3. Find the partial derivatives $\frac{\partial w}{\partial x}$ and $\frac{\partial w}{\partial y}$ when $w = xe^{x^2+y^2}$.
- 4. Show that the function

$$f(x,y) = \frac{2xy}{(x^2 + y^2)^2}$$

is differentiable at each point in its domain.

- 5. Find the equation of the plane tangent to the surface $z = x^2 + y^3$ at (3,1,10).
- 6. Compute the matrix of partial derivatives $\mathbf{D}f$ of the following function:

$$f: \mathbb{R}^2 \to \mathbb{R}^3, f(x,y) = (xe^y + \cos(y), x, x + e^y)$$

7. Find the equation of the tangent plane to $z = x^2 + 2y^3$ at (1,1,3).

Section 2.4

1. Find $\sigma'(t)$ and $\sigma'(0)$ for the following path.

$$\sigma(t) = \left(e^t, \cos(t), \sin(t)\right).$$

- 2. Determine the velocity and acceleration vectors, and the equation of the tangent line for each of the following curves at the specified value of t.
 - (a) $\mathbf{r}(t) = 6t\mathbf{i} + 3t^2\mathbf{j} + t^3\mathbf{k}$, t = 0
 - (b) $\sigma(t) = (\sin(3t), \cos(3t), 2t^{3/2})$, t = 1
 - (c) $\sigma(t) = (\cos^2(t), 3t t^3, t)$, t = 0
 - (d) $\sigma(t) = (0, 0, t)$, t = 1
- 3. Determine the velocity and acceleration vectors, and the equation of the tangent line for each of the following curves at the specified value of t.
 - (a) $\mathbf{r}(t) = \cos(t)\mathbf{i} + \sin(t)\mathbf{j}$, t = 0
 - (b) $\sigma(t) = (t \sin(t), t \cos(t), \sqrt{3}t)$, t = 0
 - (c) $\mathbf{r}(t) = \sqrt{2}t\mathbf{i} + e^t\mathbf{j} + e^{-t}\mathbf{k}$, t = 0(d) $\sigma(t) = t\mathbf{i} + t\mathbf{j} + \frac{2}{3}t^{3/2}\mathbf{k}$, t = 9
- 4. Find the path σ such that $\sigma(0) = (0, -5, 1)$ and $\sigma'(t) = (t, e^t, t^2)$.

5. Suppose a particle follows a path $\sigma(t) = (e^t, e^{-t}, \cos(t))$ until it flies off on a tangent at time t = 1. Where is it at time t = 2.

Section 2.5

- 1. Write out the chain rule for each of the following functions and justify your answer in case using Theorem 11.
- (a) $\frac{\partial h}{\partial x}$ where h(x, y) = f(x, u(x, y)). (b) $\frac{dh}{dx}$ where h(x) = f(x, u(x), v(x)). (c) $\frac{\partial h}{\partial x}$ where h(x, y, z) = f(u(x, y, z), v(x, y), w(x)). 2. Verify the first special case of the chain rule for the composition $f \circ \mathbf{c}$ in each of the following cases. (a) f(x,y) = xy , $\mathbf{c}(t) = (e^t, \cos(t))$
- (b) $f(x,y) = e^{xy}$, $\mathbf{c}(t) = (3t^2, t^3)$. 3. Let $f : \mathbb{R}^3 \to \mathbb{R}$ be differentiable. Making the substitution

$$x = \rho \cos(\theta) \sin(\phi)$$
, $y = \rho \sin(\theta) \sin(\phi)$, $z = \rho \cos(\phi)$

(spherical coordinates) into f(x, y, z), compute $\partial f/\partial \rho$, $\partial f/\partial \theta$, and $\partial f/\partial \phi$.

4. Let $f(u,v) = (\tan(u-1) - e^v, u^2 - v^2)$ and $g(x,y) = (e^{x-y}, x-y)$. Calculate $f \circ g$ and $D(f \circ g)(1,1)$.

Section 2.6

- 1. Show that the directional derivative of $f(x,y,z) = z^2 x + y^3$ at (1,1,2) in the direction $(1/\sqrt{5}, 2/\sqrt{5}, 0)$ is $2\sqrt{5}$.
- 2. Find the equation of the plane tangent to the surface z = f(x,y) at the indicated point.
 - (a) $z = x^3 + y^3 6xy$, (1,2,-3).
 - (b) $z = \cos(x)\cos(y), (0, \pi/2, 0).$
- 3. Compute the gradient ∇f for each of the following functions.
 - (a) $f(x, y, z) = 1/\sqrt{x^2 + y^2 + z^2}$
 - (b) f(x,y,z) = xy + yz + xz(c) $f(x,y,z) = \frac{1}{x^2 + y^2 + z^2}$.
- 4. For each of the functions in Exercise 6, what is the direction of fastest increase at (1,1,1)?
- 5. Captain Ralph is in trouble near the sunny side of Mercury. The temperature of the ship's hull when he is at location (x, y, z) will be given by

$$T(x, y, z) = e^{-x^2 - 2y^2 - 3z^2}$$

where x, y, z are measured in meters. He is currently at (1,1,1).

(a) In what direction should he proceed in order to decrease his temperature most rapidly?

(b) If the ship travels at e^8 meters per second, how fast will the temperature be decreasing if he heads in that direction?

(c) Unfortunately, the metal of the hull will crack if cooled at a rate greater than $\sqrt{14}e^2$ degrees per second. Describe the set of possible directions in which he may proceed to bring the temperature down at no more than that rate.

- 6. Compute the second partial derivatives $\partial^2 f / \partial x^2$, $\partial^2 f / \partial x \partial y$, $\partial^2 f / \partial y \partial x$, $\partial^2 f / \partial y^2$ for each of the following functions. Verify Theorem 15 in each case.
 - (a) $f(x,y) = 2xy/(x^2 + y^2)^2$, $(x,y) \neq 0$.

(b)
$$f(x,y,z) = e^z + (1/x) + xe^{-y}$$
, $x \neq 0$

7. Let

$$f(x,y) = \begin{cases} xy(x^2 - y^2) / (x^2 + y^2) &, (x,y) \neq (0,0) \\ 0 &, (x,y) = 0 \end{cases}$$

(a) If $(x, y) \neq 0$, calculate $\partial f / \partial x$ and $\partial f / \partial y$.

(b) Show that

$$\left. \frac{\partial f}{\partial x} \right|_{(0,0)} = 0 = \left. \frac{\partial f}{\partial y} \right|_{(0,0)}$$

(c) Show that

$$\left. \frac{\partial^2 f}{\partial x \partial y} \right|_{(0,0)} = 1 \quad , \quad \left. \frac{\partial^2 f}{\partial y \partial x} \right|_{(0,0)} = -1 \quad .$$

8. A function u = f(x, y) with continuous second partial derivatives satisfying Laplace's equation $\partial^2 u = \partial^2 u$ 0

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

is called a *harmonic function*. Show that $u(x,y) = x^3 - 3xy^2$ is harmonic.