1. Solutions to Homework Problems from Chapter 4

84.1
4.1.1. Perform the indicated operation and simply your answer. (a)
T+ 22" —4xr" +r—4)+ 4 + 27 +4x + = 5x +6x° — 3" +ox —
1 3xt + 227 — 42* 4) + (42® + 2% + 42 +3 3zt 4+ 62° — 32 + 50 — 1
(2) = 32'+2r-32° -1 inZs
(b)
(x+17? = 22+322+3v+1
= 2°+1 inZs

(c) and (d) are similar.
4.1.2. Which of the following subsets of R[z] are subrings of R[x]? Justify your answer.
(a) S = {All polynomials with constant term Og}.

This is a subring since

i) This subset contains Ogy, = Og.

(ii) This subset is closed under addition.

(iii) This subset is closed under multiplication.

(iv) If f(z) € S, —f(z) € S; so for every f(x) € S there is a solution of the equation f(z) + X = 0p
in S.

(b) S = {Alll polynomials of degree 2 }.
Not a subring since it does not contain Ogjz) = 0.
(¢) S = {All polynomials of degree < k € N, where 0 < k}.

Not a subring since it is not closed under multiplication; if f(z) € S is a polynomial of degree k, then
f(z)f(z) has degree 2k and so does not lie in S.

(d) S = {All polynomials in which odd powers of = have zero coefficients}.

This is a subring. Properties analogous to (i)-(iv) in (a) are easily verified; perhaps the only non-trivial
part is the verification that S is closed under multiplication. If f(z), g(x) € S and

flx) = Ao 22" + Qop 022" 2 4+ a9z + ag
g(x) = boma®™ 4 bapm 2™ 2 4 box® b
then
f(@)g(®) = aznbom@® 2™ + (a2nbam 2 + Gz 2boy) 22022

k
+--- Z agib2k72i$2k +---+ (Cbgbo + Cbobg) .’IJ2 + Cbobo
=0
also belongs to S.

(e) S = {All polynomials in which even powers of = have zero coefficients}.

This is not subring since it is not closed under multiplication. (For example, the product of two polynomials
of degree 1 is a polynomial of degree 2.)
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4.1.3. List all polynomials of degree 3 in Za[z].

:Jc3,x3—0—1,:103—l—x,x?’—l—x—l—l,xg—|—x2,x3+x2+1,x3—|—x2+x,x3+x2—|—x+1

4.1.4. Let F be a field and let f(z) be a non-zero polynomial in F[z]. Show that f(z) is a unit in F[z] if
and only if deg f(z) = 0.

< If deg f(x) = 0, then f(x) = ¢, a nonzero element of the field F. Since F is a field and ¢ # Op, ¢!
exists, so f(z) is a unit.

= Certainly, if f(z) is a unit, f(z) # 0. Suppose deg f(z) # 0. Then deg f(z) > 1. Let g(z) be the nonzero
element of F[z] such that f(x)g(x) = 1p; = 1lp. Then

0= deg(lr) =deg (f(z)9(x)) = deg (f(2)) + deg (9(2)) -

Since deg (f(z)) > 1, deg(g(x)) < —1. But there is no elements of negative degree in F[z]. Hence, g(z)
does not exist; hence f(z) is not a unit.

§4.2
42.1. I a,b € F and a # b, show that z + a and « + b are relatively prime in F[z].

Suppose =+ a and z + b are not relatively prime. Then GCD(z+a,z +b) # 1p. Since 1 is the only monic
polynomial of degree 0, and the GCD of x4+ a and x + b must be a monic polynomial of degree less than or
equal to that of z +a and z +b, GCD(x + a, x4+ b) must be a monic polynomial d(x) of degree 1. But then

x+a = cd(x) , x+b=cd(x)
Since z + a, z + b and d(z) are all monic, we must have ¢ = ¢/ = 1. But then
r+a=xz+b = a=0D
We have thus shown that if GCD(z + a,z +b) # 1p, then a = b. The contrapositive of this statement is
that if a # b, then GCD(x +a,z+b) = 1. I
4.2.2. Let f(z),9(z) € Flz|. If f(z) | g(x) and g(z) | f(x), show that f(x) = cg(z) for some non-zero ¢ € F.

Well, f(z) | g(z) and g(z) | f(z) imply, respectively, that
g(z) = q(@)f(z) ,
fl@) = s(x)glz)

with neither ¢(z) or s(z) equal to Op. Calculating the degrees of both sides of these two equations (applying
Theorem 4.1 to calculate the right hand sides), we find

deg(g(x)) = deg(q(z)) +deg(f(z)) = deg(g(z)) < deg(f())
deg(f(x)) = deg(s(z)) +deg(g(r)) = deg(f(x)) < deg(g(z))
The two inequalities on the right imply that deg (f(x)) = deg(g(x)), and so we can infer that deg(¢(z)) =
deg(s(x)) = 0. Thus, ¢(z),s(x) € F. Set ¢ = s(x) € F. We then have g(z) = cf(x). I
(b) If f(x) and g(z) are monic and f(z) | g(x) and g(z) | f(x), show that f(z) = g(x).
From part (a) we know f(z) and g(z) have the same degree. Suppose deg(f(z)) = deg(g(x)) = n. Since

f(z) and g(zx) are also monic, we can set

fl) = 2" +an 12" '+ +az+ag
g(z) = 2" +by 2"+ bz + b
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But part (a) also tells us that g(x) = c¢f(x); so we must have

1 = ¢
Gpn—1 = by q
a1 = Cb1
apg = Cbo

Thus, a; = b;, 1 =0,1,...,n-1, hence f(z) = g(z). Il

4.2.3. Let f(z) € Flz] and assume f(z) | g(z) for every nonconstant g(z) € F[z]. Show that f(z) is a
constant polynomial.

If f(z) | g(x), then any associate of f(x) divides g(x). Since every nonzero polynomial has a monic associate,
we can without loss of generality take f(z) to be monic.

Thus, suppose f(x) is a monic polynomial that is a common divisor of all nonconstant polynomials. It must
be in particular a common divisor of the monic polynomials of degree 1. But in order to be a divisor of a
polynomial of degree 1, f(z) must have degree less than or equal to 1.

Suppose f(z) has degree 1. Then f(z) would have the form f(z) =z +a. Let g(z) =2 + b with a # b. In
Problem 4.2.3, it is shown if  + a # 2 + b, then GCD(x + a,z + b) = 1. Thus, f(z) cannot be a divisor of
g(x). Thus, f(z) cannot be of degree 1.

Suppose f(z) has degree 0. Then f(z) is a constant polynomial and so divides every nonconstant polyno-
mial. i

4.2.4. Let f(x),g(x) € Flx], not both zero, and let d(z) = GCD (f(x),g(x)). If h(z) is a common divisor
of f(x) and g(x) of highest possible degree, then prove that h(x) = cd(x) for some nonzero ¢ € F.

Since by definition d(z) is the monic polynomial that is a common divisor of f(x) and g(z) of highest possible
degree, Suppose h(x) is a common divisor of f(z) and g(z) of highest possible degree. Say deg (h(z)) = n,
so that
h(a) = apa” + 012" '+ daztag 0y #0p
Then R
h(z) = a, 'h(z) = 2™ +a,  an 12" P 4+ +a, tarxr + a, Lag
is a monic polynomial also of degree n that divides f(z) and g(x); for
h@) | flo) = fl2) =r@h@) = (@) (0, (@) = h@)]fl@)
Wa)lgl@) = g@) = q@h@) = (e(@)an) (a,'h(x)) = h(z)|g(2)

But by Theorem 4.4, the GCD of f(z) and g(z) is unique monic polynomial that is a common divisor of
f(z) and g(x) with highest possible degree. Hence

d(z) = h(z) = a; 'h(x)
h(z) = a,d(x)
]

4.2.5. If f(x) is relatively prime to Op, what can be said about f(z).

If f(z) is relatively prime to Op, then GCD(f,0r) = 1p. Now the GCD of f and Op must be a common
divisor of f and Op. Since every polynomial is a divisor of Op (for Op = Op - g(z) for all g(x) € FJ[z]), the
set of common divisors of f and Op is simply the set of divisors of f. But if f is certainly divides f, and
if g is any other polynomial that divides f then deg(g) < deg(f). Therefore, the degree of the greatest
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divisor of f is the degree of f. Therefore, the degree of the greatest common divisor of f and Op is equal
to the degree of f. Since by hypothesis, GCD(f,0r) = 1, we must have deg(f) = 0. Thus, f must be a
constant. [JJ

4.2.6. Let f(x),g(z)
that f(2)g(2) | h(z)

Since f(z) and g(x) are relatively prime, GCD (f(z),g9(z)) = 1lp. By Theorem 4.4, there then exist
polynomials u(z) and v(z) such that

h(z) € Flz], with f(z) and g(x) relatively prime. If f(z) | h(z) and g(z) | h(x), prove

?

lp = f(@)u(z) + g(z)o(x)

Multiplying both sides of this equation by h(z) yields

(3) Mx) = h(a) f(z)u(z) + h(z)g(x)v(x)

Now if h(z) is divisible by both f(z) and g(x) we may find polynomials () and s(z) such that
Mx) =r(x)f(z) = s(z)g()

Inserting these expressions for A(z) into (3) yields

Mx) = s(x)g(a) f(x)u(z) + r(2)f(@)g(x)o(z) = (s(x)u(z) + r(x)v(z)) f(z)g(2)
Thus, f(z)g(z) | A(z). 11

4.2.7. Let f(z),g(x),h(z) € Flz], with f(z) and g(z) relatively prime. If h(x) | f(x), prove that h(z) and
g(x) are relatively prime.

Set
d(x) = GCD (h(x),g(x))
By definition d(z) | h(z) and d(z) | g(x) and so we can write
(4) Mz) = q(x)d(z) , g(z)=r(z)d(z)
If A(x) | f(x), then we can write f(z) = s(x)h(x), for some nonzero s(z) € F[z]. But this together with (4)
implies
f(z) = s(x)q(z)d(z)

Now since f(z) and g(x) are relatively prime

lp = GCD(f(x),9(z))
so by Theorem 4.4, there exists polynomials u(x) and v(z) such that
lp = u(z)f(2) +v(X)g(x) = (u(z)s(x)q(z) + v(x)r(z)) d(z)

This implies that 1 is divisible by d(z), a monic polynomial of degree greater than or equal to 0. This is
impossible, unless d(z) is a monic polynomial of degree 0; i.e., unless d(z) = 1p. Il

4.2.8. Let f(x),¢(x),h(z) € Flz], with f(z) and g(z) relatively prime. Prove that the GOD of f(z)h(x)
and ¢(z) is the same as the GCD of h(x) and g(z).

Since f(z) and g(x) are relatively prime, there exist polynomials w(z) and v(z) such that
1p =u(z)f(z) +v(x)g(z).
Multiplying both sides of this equation by h(z) yields

(5) Mx) = u(x)h(x) f(z) + h(z)o(x)g(x)
Suppose ¢(z) is a common divisor of A(z)f(z) and g(z). Then we can write

Wa)f(x) = qlx)e(z) ,  g(x) = rx)e(@)
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and (5) can be rewritten as
Mx) = (u(@)q(z) + h(z)o(x)r(z)) c(x)

so ¢(x) | h(z). Thus, if ¢(z) is a common divisor of f(z)h(z) and g(x) then it is a common divisor of h(x)
and g(z).
Alternatively, if ¢(x) is a common divisor of h(z) and g(z), then it is certainly a common divisor of f(x)h(z)
and g(z). Thus, the sets

R = {common divisors of h(z) and g(x)}

S = {common divisors of f(z)h(z) and g(x)}
are identical. Hence, the monic polynomials of highest degree in R and S are identical. Hence GC'D (h(z), g(x)) =
GOD (f(z)h(z),9(x)). N
§4.3
4.3.1 Prove that f(z) and g(x) are associates in F[z] if and only if f(z) | g(z) and g(z) | f(x).

= Suppose f(z) and g(z) are associates in F[z]. Then there exists a nonzero ¢ € F such that
f(@) = cg(x)
thus g(z) | f(z). But since every nonzero ¢ € F is a unit, ¢! also exits and
g(@)=cleg(a) = f(2)

so f(x) ] g(x).
< Suppose f(z) | g(x) and g(z) | f(z). Then we have nonzero elements ¢(z), p(z) € F[z] such that
(6) glx) = q(@)f(z) ,
(7) flx) = plx)g(z)
Computing the degrees of both sides of these equations gives us

deg (g(x)) deg (¢(x)) + deg(f(z)) = deg (f(z))

deg(f(z)) = deg(p(x))+deg(g(x)) = deg(g(x))
Comparing these two inequalities we conclude that

deg (f(x)) = deg (9())

and

deg (p(x)) = 0 = deg (q(v))
Thus, p(z) and ¢(z) must be nonzero constants. Say p(z) = ¢ € F and ¢(x) = k € F. Then the relations
(7) become

gx) = kf(x) ,
f@) = cglz)
which is to say that f(z) and g(z) are associates. 11

4.3.2 Prove that f(z) is irreducible in F[z] if and only if its associates are irreducible.

= Suppose that f(z) is irreducible. Then its only divisors are nonzero constant polynomials and its
associates. Suppose

g(x) = cf(x)
were an associate of f(x) that was not irreducible. Then g(z) would have a factorization
g(x) = r(x)q(z)

in which one factor, say 7(x) is neither a constant nor an associate of g(x). But then

f(@) =c r(@)q(x)
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would have a divisor 7(x) that is neither a constant nor an associate of f(x) (r(z) is an associate of f(x) if
and only if it is an associate of ¢g(x)). But this contradicts the hypothesis that f(z) is irreducible. Hence
g(x) can not be irreducible.

< Use the same argument as above, exchanging the roles of f(z) and g(z) (i.e., assume an associate g(z)
of f(z) is irreducible and then conclude that f(z) is irreducible). |

4.3.3. If p(z) and ¢(z) are nonassociate irreducibles in F[z], prove that p(x) and ¢(x) are relatively prime.

Set
d(x) = GCD (p(x), ¢(x))

We aim to show that if p(x) and ¢(x) are nonassociate irreducibles then d(z) = 1. Suppose p(z) and ¢(z)
are nonassociate irreducible polynomials of degree m and n, respectively;

p(z) = apt™+---+axrta , omFOp

g(z) = bpa"+---+bx+by , by, #O0p
Now because p(z) and ¢(z) are irreducibles, their only monic divisors are, respectively, 1p and a,,'p(z);
and 1p and b, 'q(z). Thus,

d(z) € {1, a, p(z), b, 'q(x) |

Ip(x) | g(z). But the only nonconstant monic divisor of ¢(z) is b, 1¢(z).

Suppose d(z) = a,,'p(z). Then a,,
Hence,

a,'p(x) =0, q(xr) = p()=amb, q(z)
so p(z) and ¢(z) are associates. But this contradicts our hypothesis. And the same contradiction would be
arise if d(z) = b, 'p(z). Hence, we must have

d(x) =GCD (p(x),q(x)) = 1p

if p(z) and ¢(z) are nonassociate irreducibles. [
§4.4

4.4.1. Verify that every element of Zs is a root of f = 2% — x € Zs.

‘We have
F(0ls) = [0]3—[0]s = [0]3
Ji([l]g = [tz —[1]s =[0]s
f(2ls) = [Bls—[2s=1[0]s

and so every a € Zg is a root of f.

4.4.2. Use the Factor Theorem to show that f = x” — x factors in Z, as
f=a(x— ) (= - [27) (x — Bl7) (x = [4]7) (x — [5]7) (= — [6]7)

We first verify that every a € Zz is a root of f.

f(0]7) = [0z —[0]z=[0]
f(7) = =1 =0
F(2:) = (28 — 2z = [0l
f(38l7) = [2187); = [7]; = [0]
F(Alr) = [16384]7 — [4]; = [0]7
F(Blr) = [78125]7 — [5]; = [0~
F([617) [
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Applying Theorem 4.12, we conclude that every polynomial x — a, a € Z~, is a factor of f. Since x — a does
not, divide x — b unless a = b, we can conclude that

f=a(x—{)(z—[27) (« - Blr) (= = {]z) (& — [5]7) (= = [6]7) ¢
for some ¢ € Zs[x]. Comparing degrees and the coefficient of 27 on both sides we conclude ¢ = 1 and the
statement then follows. |

4.4.3. If a € F is a nonzero root of
f=cud™+...+cix+co € Flz]
show that ¢! is a root of

g=cox" +cix" - 4oey,

Well, R
Op = f(a) = cpa” +---+cra+co
Multiplying both sides by (Cfl)n, we get
0= Cp+---+c1 (a—1>n71 +¢o (Cfl)n _ g (CL71>

Lis a root of g. 1l

and so a~

4.4.4. Prove that 22 + 1 is reducible in Zyz] if and only if there exists integers a and b such that p=a+1b
and ab =1 (mod p).

=

Suppose p = @ + b with ab = 1 (mod p) and consider the polynomial

(p + [a]p) ([Lpz + [0]p)
Expanding this polynomial we get

( + la]p) (x +[0]p) [pr + ([alp + [0]p) @ + lalp (0]
= [1]10 + [a + b]pz + [al],
= [1]10952 + [0z + [1],
— [+ 11,

and so we have factorized [1],2% + [1], in Z,[z].

< Now suppose f = [1],22 + [1], is reducible. Then there must be a nontrivial factorization of f. Since f
has degree 2, the most general form of this factorization is

(8) [1]px2 + (1], = (cx +d) (ex + f)

with ¢, d, e, f € Z,. Expanding the right hand side of (??) and identifying the coefficients of like powers of
x, we find

) c = I,
(10) cf+de = 0],
(11) af = [l
Let a,b € Z be any integers such that [a], = cf, and [b], = de. Then (??7) implies
lal,+ ], = cf+de=[0], = a+b=0 (modp)
[aplbly = (cf)(de) = (cf)(de) =[Uplll, =[], = ab=1 (modp)

4.4.5. Find a polynomial of degree 2 in Zg[x| that has four roots in Zg. Does this contradict Corollary 4.13?

Consider

f = [B6x® + [Blex
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Then
f([0le) = [0]¢+ [0]¢ = [Ol6
f(2s) = [12]6+ [6]6 = [0]s
f(Ble) = [27]6 4 [9] = [0l
f([4e) = [48]6 +[12]6 = [0]6

and so f has four roots. This does not contradict Corollary 4.13, since Zg is not a field (it is not even an
integral domain). [



