
1. Solutions to Homework Problems from Chapter 4

§4.1

4.1.1. Perform the indicated operation and simply your answer. (a)

(3x4 + 2x3 − 4x2 + x− 4) + (4x3 + x
2 + 4x+ 3) = 3x4 + 6x3 − 3x2 + 5x− 1(1)

= 3x4 + x− 3x2 − 1 in Z5(2)

(b)

(x+ 1)3 = x3 + 3x2 + 3x+ 1

= x3 + 1 in Z3

(c) and (d) are similar.

4.1.2. Which of the following subsets of R[x] are subrings of R[x]? Justify your answer.

(a) S = {All polynomials with constant term 0R}.

This is a subring since

(i) This subset contains 0R[x] = 0R.
(ii) This subset is closed under addition.
(iii) This subset is closed under multiplication.
(iv) If f(x) ∈ S, −f(x) ∈ S; so for every f(x) ∈ S there is a solution of the equation f(x) +X = 0R

in S.

(b) S = {Alll polynomials of degree 2 }.

Not a subring since it does not contain 0R[x] = 0.

(c) S = {All polynomials of degree ≤ k ∈ N, where 0 < k}.

Not a subring since it is not closed under multiplication; if f(x) ∈ S is a polynomial of degree k, then
f(x)f(x) has degree 2k and so does not lie in S.

(d) S = {All polynomials in which odd powers of x have zero coefficients}.

This is a subring. Properties analogous to (i)-(iv) in (a) are easily verified; perhaps the only non-trivial
part is the verification that S is closed under multiplication. If f(x), g(x) ∈ S and

f(x) = a2nx
2n + a2n−2x

2n−2 + · · · a2x
2 + a0

g(x) = b2mx
2m + b2m−2x

2m−2 + · · · b2x
2 + b0

then

f(x)g(x) = a2nb2mx
2n+2m + (a2nb2m−2 + a2n−2b2m)x

2n+2m−2

+ · · ·

k∑

i=0

a2ib2k−2ix
2k
+ · · ·+ (a2b0 + a0b2)x

2 + a0b0

also belongs to S.

(e) S = {All polynomials in which even powers of x have zero coefficients}.

This is not subring since it is not closed under multiplication. (For example, the product of two polynomials
of degree 1 is a polynomial of degree 2.)
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4.1.3. List all polynomials of degree 3 in Z2[x].

x3, x3 +1, x3 + x, x3 + x+1, x3 + x2, x3 + x2 + 1, x3 + x2 + x,x3 + x2 + x+ 1

4.1.4. Let F be a field and let f(x) be a non-zero polynomial in F [x]. Show that f(x) is a unit in F [x] if
and only if deg f(x) = 0.

⇐ If deg f(x) = 0, then f(x) = c, a nonzero element of the field F . Since F is a field and c �= 0F , c−1

exists, so f(x) is a unit.

⇒ Certainly, if f(x) is a unit, f(x) �= 0. Suppose deg f(x) �= 0. Then deg f(x) ≥ 1. Let g(x) be the nonzero
element of F [x] such that f(x)g(x) = 1F [x] = 1F . Then

0 = deg(1F ) =deg (f(x)g(x)) = deg (f(x)) + deg (g(x)) .

Since deg (f(x)) ≥ 1, deg (g(x)) ≤ −1. But there is no elements of negative degree in F [x]. Hence, g(x)
does not exist; hence f(x) is not a unit.

§4.2

4.2.1. If a, b ∈ F and a �= b, show that x+ a and x+ b are relatively prime in F [x].

Suppose x+a and x+b are not relatively prime. Then GCD(x+a, x+b) �= 1F . Since 1F is the only monic
polynomial of degree 0, and the GCD of x+ a and x+ b must be a monic polynomial of degree less than or
equal to that of x+a and x+ b, GCD(x+a, x+ b) must be a monic polynomial d(x) of degree 1. But then

x+ a = cd(x) , x+ b = c′d(x) .

Since x+ a, x+ b and d(x) are all monic, we must have c = c′ = 1. But then

x+ a = x+ b ⇒ a = b .

We have thus shown that if GCD(x + a,x + b) �= 1F , then a = b. The contrapositive of this statement is
that if a �= b, then GCD(x+ a, x+ b) = 1.

4.2.2. Let f(x), g(x) ∈ F [x]. If f(x) | g(x) and g(x) | f(x), show that f(x) = cg(x) for some non-zero c ∈ F .

Well, f(x) | g(x) and g(x) | f(x) imply, respectively, that

g(x) = q(x)f(x) ,

f(x) = s(x)g(x) ,

with neither q(x) or s(x) equal to 0F . Calculating the degrees of both sides of these two equations (applying
Theorem 4.1 to calculate the right hand sides), we find

deg (g(x)) = deg (q(x)) + deg (f(x)) ⇒ deg (g(x)) ≤ deg (f(x))

deg (f(x)) = deg (s(x)) + deg (g(x)) ⇒ deg (f(x)) ≤ deg (g(x))

The two inequalities on the right imply that deg (f(x)) = deg (g(x)), and so we can infer that deg (q(x)) =
deg (s(x)) = 0. Thus, q(x), s(x) ∈ F . Set c = s(x) ∈ F . We then have g(x) = cf(x).

(b) If f(x) and g(x) are monic and f(x) | g(x) and g(x) | f(x), show that f(x) = g(x).

From part (a) we know f(x) and g(x) have the same degree. Suppose deg (f(x)) = deg (g(x)) = n. Since
f(x) and g(x) are also monic, we can set

f(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0

g(x) = xn + b
n−1x

n−1 + · · ·+ b1x+ b0 .
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But part (a) also tells us that g(x) = cf(x); so we must have

1 = c

an−1 = cbn−1

...

a1 = cb1

a0 = cb0 .

Thus, ai = bi, i = 0, 1, . . . , n-1, hence f(x) = g(x).

4.2.3. Let f(x) ∈ F [x] and assume f(x) | g(x) for every nonconstant g(x) ∈ F [x]. Show that f(x) is a
constant polynomial.

If f(x) | g(x), then any associate of f(x) divides g(x). Since every nonzero polynomial has a monic associate,
we can without loss of generality take f(x) to be monic.

Thus, suppose f(x) is a monic polynomial that is a common divisor of all nonconstant polynomials. It must
be in particular a common divisor of the monic polynomials of degree 1. But in order to be a divisor of a
polynomial of degree 1, f(x) must have degree less than or equal to 1.

Suppose f(x) has degree 1. Then f(x) would have the form f(x) = x+ a. Let g(x) = x+ b with a �= b. In
Problem 4.2.3, it is shown if x+ a �= x+ b, then GCD(x+ a, x+ b) = 1. Thus, f(x) cannot be a divisor of
g(x). Thus, f(x) cannot be of degree 1.

Suppose f(x) has degree 0. Then f(x) is a constant polynomial and so divides every nonconstant polyno-
mial.

4.2.4. Let f(x), g(x) ∈ F [x], not both zero, and let d(x) = GCD (f(x), g(x)). If h(x) is a common divisor
of f(x) and g(x) of highest possible degree, then prove that h(x) = cd(x) for some nonzero c ∈ F .

Since by definition d(x) is the monic polynomial that is a common divisor of f(x) and g(x) of highest possible
degree, Suppose h(x) is a common divisor of f(x) and g(x) of highest possible degree. Say deg (h(x)) = n,
so that

h(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 , an �= 0F ,

Then
h̃(x) = a−1

n
h(x) = xn + a−1

n
an−1x

n−1 + · · ·+ a−1
n
a1x+ a−1

n
a0

is a monic polynomial also of degree n that divides f(x) and g(x); for

h(x) | f(x) ⇒ f(x) = r(x)h(x) = (r(x)an)
(
a
−1

n
h(x)

)
⇒ h̃(x) | f(x) ,

h(x) | g(x) ⇒ g(x) = q(x)h(x) = (q(x)an)
(
a−1
n

h(x)
)

⇒ h̃(x) | g(x) .

But by Theorem 4.4, the GCD of f(x) and g(x) is unique monic polynomial that is a common divisor of
f(x) and g(x) with highest possible degree. Hence

d(x) = h̃(x) = a−1

n
h(x)

or
h(x) = and(x) .

4.2.5. If f(x) is relatively prime to 0F , what can be said about f(x).

If f(x) is relatively prime to 0F , then GCD(f, 0F ) = 1F . Now the GCD of f and 0F must be a common
divisor of f and 0F . Since every polynomial is a divisor of 0F (for 0F = 0F · g(x) for all g(x) ∈ F [x]), the
set of common divisors of f and OF is simply the set of divisors of f . But if f is certainly divides f , and
if g is any other polynomial that divides f then deg(g) ≤ deg(f). Therefore, the degree of the greatest
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divisor of f is the degree of f. Therefore, the degree of the greatest common divisor of f and 0F is equal
to the degree of f. Since by hypothesis, GCD(f,0F ) = 1, we must have deg(f) = 0. Thus, f must be a
constant.

4.2.6. Let f(x), g(x), h(x) ∈ F [x], with f(x) and g(x) relatively prime. If f(x) | h(x) and g(x) | h(x), prove
that f(x)g(x) | h(x).

Since f(x) and g(x) are relatively prime, GCD (f(x), g(x)) = 1F . By Theorem 4.4, there then exist
polynomials u(x) and v(x) such that

1F = f(x)u(x) + g(x)v(x) .

Multiplying both sides of this equation by h(x) yields

(3) h(x) = h(x)f(x)u(x) + h(x)g(x)v(x) .

Now if h(x) is divisible by both f(x) and g(x) we may find polynomials r(x) and s(x) such that

h(x) = r(x)f(x) = s(x)g(x) .

Inserting these expressions for h(x) into (3) yields

h(x) = s(x)g(x)f(x)u(x) + r(x)f(x)g(x)v(x) = (s(x)u(x) + r(x)v(x)) f(x)g(x) .

Thus, f(x)g(x) | h(x).

4.2.7. Let f(x), g(x), h(x) ∈ F [x], with f(x) and g(x) relatively prime. If h(x) | f(x), prove that h(x) and
g(x) are relatively prime.

Set

d(x) = GCD (h(x), g(x)) .

By definition d(x) | h(x) and d(x) | g(x) and so we can write

(4) h(x) = q(x)d(x) , g(x) = r(x)d(x)

If h(x) | f(x), then we can write f(x) = s(x)h(x), for some nonzero s(x) ∈ F [x]. But this together with (4)
implies

f(x) = s(x)q(x)d(x) .

Now since f(x) and g(x) are relatively prime

1F = GCD (f(x), g(x)) ,

so by Theorem 4.4, there exists polynomials u(x) and v(x) such that

1F = u(x)f(x) + v(X)g(x) = (u(x)s(x)q(x) + v(x)r(x)) d(x) .

This implies that 1F is divisible by d(x), a monic polynomial of degree greater than or equal to 0. This is
impossible, unless d(x) is a monic polynomial of degree 0; i.e., unless d(x) = 1F .

4.2.8. Let f(x), g(x), h(x) ∈ F [x], with f(x) and g(x) relatively prime. Prove that the GCD of f(x)h(x)
and g(x) is the same as the GCD of h(x) and g(x).

Since f(x) and g(x) are relatively prime, there exist polynomials u(x) and v(x) such that

1F = u(x)f(x) + v(x)g(x).

Multiplying both sides of this equation by h(x) yields

(5) h(x) = u(x)h(x)f(x) + h(x)v(x)g(x) .

Suppose c(x) is a common divisor of h(x)f(x) and g(x). Then we can write

h(x)f(x) = q(x)c(x) , g(x) = r(x)c(x)
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and (5) can be rewritten as
h(x) = (u(x)q(x) + h(x)v(x)r(x)) c(x) ,

so c(x) | h(x). Thus, if c(x) is a common divisor of f(x)h(x) and g(x) then it is a common divisor of h(x)
and g(x).

Alternatively, if c(x) is a common divisor of h(x) and g(x), then it is certainly a common divisor of f(x)h(x)
and g(x). Thus, the sets

R = {common divisors of h(x) and g(x)}

S = {common divisors of f(x)h(x) and g(x)}

are identical. Hence, the monic polynomials of highest degree inR and S are identical. HenceGCD (h(x), g(x)) =
GCD (f(x)h(x), g(x)).

§4.3

4.3.1 Prove that f(x) and g(x) are associates in F [x] if and only if f(x) | g(x) and g(x) | f(x).

⇒ Suppose f(x) and g(x) are associates in F [x]. Then there exists a nonzero c ∈ F such that

f(x) = cg(x)

thus g(x) | f(x). But since every nonzero c ∈ F is a unit, c−1 also exits and

g(x) = c−1cg(x) = c−1f(x) ;

so f(x) | g(x).

⇐ Suppose f(x) | g(x) and g(x) | f(x). Then we have nonzero elements q(x), p(x) ∈ F [x] such that

g(x) = q(x)f(x) ,(6)

f(x) = p(x)g(x) .(7)

Computing the degrees of both sides of these equations gives us

deg (g(x)) = deg (q(x)) + deg (f(x)) ≥ deg (f(x)) ,

deg (f(x)) = deg (p(x)) + deg (g(x)) ≥ deg (g(x)) .

Comparing these two inequalities we conclude that

deg (f(x)) = deg (g(x))

and
deg (p(x)) = 0 = deg (q(x)) .

Thus, p(x) and q(x) must be nonzero constants. Say p(x) = c ∈ F and q(x) = k ∈ F . Then the relations
(7) become

g(x) = kf(x) ,

f(x) = cg(x) ,

which is to say that f(x) and g(x) are associates.

4.3.2 Prove that f(x) is irreducible in F [x] if and only if its associates are irreducible.

⇒ Suppose that f(x) is irreducible. Then its only divisors are nonzero constant polynomials and its
associates. Suppose

g(x) = cf(x)

were an associate of f(x) that was not irreducible. Then g(x) would have a factorization

g(x) = r(x)q(x)

in which one factor, say r(x) is neither a constant nor an associate of g(x). But then

f(x) = c−1r(x)q(x)
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would have a divisor r(x) that is neither a constant nor an associate of f(x) (r(x) is an associate of f(x) if
and only if it is an associate of g(x)). But this contradicts the hypothesis that f(x) is irreducible. Hence
g(x) can not be irreducible.

⇐ Use the same argument as above, exchanging the roles of f(x) and g(x) (i.e., assume an associate g(x)
of f(x) is irreducible and then conclude that f(x) is irreducible).

4.3.3. If p(x) and q(x) are nonassociate irreducibles in F [x], prove that p(x) and q(x) are relatively prime.

Set

d(x) = GCD (p(x), q(x)) .

We aim to show that if p(x) and q(x) are nonassociate irreducibles then d(x) = 1F . Suppose p(x) and q(x)
are nonassociate irreducible polynomials of degree m and n, respectively;

p(x) = amxm + · · ·+ a1x+ a0 , am �= 0F ,

q(x) = bnx
n + · · ·+ b1x+ b0 , bn �= 0F .

Now because p(x) and q(x) are irreducibles, their only monic divisors are, respectively, 1F and a−1
m

p(x);
and 1F and b−1

n
q(x). Thus,

d(x) ∈
{
1F , a

−1

m
p(x), b−1

n
q(x)

}
.

Suppose d(x) = a−1
m

p(x). Then a−1
m

p(x) | q(x). But the only nonconstant monic divisor of q(x) is b−1
n
q(x).

Hence,

a−1
m
p(x) = b−1

n
q(x) ⇒ p(x) = amb

−1

n
q(x)

so p(x) and q(x) are associates. But this contradicts our hypothesis. And the same contradiction would be
arise if d(x) = b−1

n
p(x). Hence, we must have

d(x) =GCD (p(x), q(x)) = 1F

if p(x) and q(x) are nonassociate irreducibles.

§4.4

4.4.1. Verify that every element of Z3 is a root of f = x3 − x ∈ Z3.

We have

f̃ ([0]3) = [0]3 − [0]3 = [0]3

f̃ ([1]3) = [1]3 − [1]3 = [0]3

f̃ ([2]3) = [8]3 − [2]3 = [0]3

and so every a ∈ Z3 is a root of f.

4.4.2. Use the Factor Theorem to show that f = x7
− x factors in Z7 as

f = x (x− [1]7) (x− [2]7) (x− [3]7) (x− [4]7) (x− [5]7) (x− [6]7) .

We first verify that every a ∈ Z7 is a root of f.

f ([0]7) = [0]7 − [0]7 = [0]

f̃ ([1]7) = [1]7 − [1]7 = [0]7

f̃ ([2]7) = [128]7 − [2]7 = [0]7

f ([3]7) = [2187]7 − [7]7 = [0]

f̃ ([4]7) = [16384]7 − [4]7 = [0]7

f̃ ([5]7) = [78125]7 − [5]7 = [0]7

f̃ ([6]7) = [279936]7 − [6] = [0]7
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Applying Theorem 4.12, we conclude that every polynomial x−a, a ∈ Z7, is a factor of f . Since x− a does
not divide x− b unless a = b, we can conclude that

f = x (x− [1]7) (x− [2]7) (x− [3]7) (x− [4]7) (x− [5]7) (x− [6]7) q

for some q ∈ Z3[x]. Comparing degrees and the coefficient of x7 on both sides we conclude q = 1 and the
statement then follows.

4.4.3. If a ∈ F is a nonzero root of

f = c
n
xn + . . .+ c1x+ c0 ∈ F [x] ,

show that a−1 is a root of
g = c0x

n + c1x
n−1 + · · ·+ cn .

Well,
0F = f̃(a) = cna

n + · · ·+ c1a+ c0 .

Multiplying both sides by
(
a
−1

)
n

, we get

0 = cn + · · ·+ c1

(
a
−1

)
n−1

+ c0

(
a
−1

)
n

= g̃

(
a
−1

)
.

and so a
−1 is a root of g.

4.4.4. Prove that x2 +1 is reducible in Zp[x] if and only if there exists integers a and b such that p = a+ b

and ab ≡ 1 (mod p).

⇒

Suppose p = a+ b with ab ≡ 1 (mod p) and consider the polynomial

([1]px+ [a]p) ([1]px+ [b]p) .

Expanding this polynomial we get

(x+ [a]p) (x+ [b]p) = [1]px
2 + ([a]p + [b]p)x+ [a]p[b]p

= [1]px
2 + [a+ b]px+ [ab]p

= [1]px
2 + [0]px+ [1]p

= [1]px
2 + [1]p

and so we have factorized [1]px2 + [1]p in Zp[x].

⇐ Now suppose f = [1]px2 + [1]p is reducible. Then there must be a nontrivial factorization of f . Since f

has degree 2, the most general form of this factorization is

(8) [1]px
2 + [1]p = (cx+ d) (ex+ f)

with c, d, e, f ∈ Zp. Expanding the right hand side of (??) and identifying the coefficients of like powers of
x, we find

ec = [1]p(9)

cf + de = [0]p(10)

df = [1]p(11)

Let a, b ∈ Z be any integers such that [a]p = cf, and [b]p = de. Then (??) implies

[a]p + [b]p = cf + de = [0]p ⇒ a+ b ≡ 0 (mod p)

[a]p[b]p = (cf)(de) = (cf)(de) = [1]p[1]p = [1]p ⇒ ab ≡ 1 (mod p)

4.4.5. Find a polynomial of degree 2 in Z6[x] that has four roots in Z6. Does this contradict Corollary 4.13?

Consider
f = [3]6x

2 + [3]6x
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Then

f ([0]6) = [0]6 + [0]6 = [0]6

f ([2]6) = [12]6 + [6]6 = [0]6

f ([3]6) = [27]6 + [9] = [0]6

f ([4]6) = [48]6 + [12]6 = [0]6

and so f has four roots. This does not contradict Corollary 4.13, since Z6 is not a field (it is not even an
integral domain).


