
Solutions to Homework Set 2

(Homework Problems from Chapter 1)

Problems from Section 1.1.

1.1.1
Let n be an integer. Prove that a and c leave the same remainder when divided by n if and only if a−c = nk

for some k ∈ Z.

Proof.

⇒

Suppose a− c = nk. By the division algorithm, there exist unique integers q1, r1, q2, r2 such that

a = nq1 + r1 ; 0 ≤ r1 < n

c = nq2 + r2 ; 0 ≤ r2 < n .

But then we have

a− c = nk + 0

a− c = n(q1 − q2) + (r1 − r2)

Thus

r1 − r2 = n(q1 − q2 + k)

and so r1 − r2 is divisible by n. However, the conditions 0 ≤ r1, r2 < n imply

0 ≤ |r1 − r2| < n

But the only non-negative integer divisible by n and less than n is 0. Hence, r1 − r2 = 0, or r1 = r2.

⇐
Assume a = nq1 + r and c = nq2 + r. Then a− c = n(q1 − q2). So a− c is divisible by n.

1.1.2
Let a and b be integers with c �= 0. Then there exist unique integers q and r such that

(i) a = cq + r

(ii) 0 ≤ r < |c| .

Proof.

If c is positive, then c = |c| and this is just the statement of the Division Algorithm (Theorem 1.1) so there
is nothing more to prove.

If c is negative, then −c = |c| is positive and we can apply the Division Algorithm: there exist unique
integers q′ and r′ such that

a = |c|q′ + r′ and 0 ≤ r′ < |c| ,

or, equivalently

a = −cq′ + r′ and 0 ≤ r′ < |c| .
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We have thus shown that there exist integers q and r satisfying (i). We must now show this choice of q and
r is unique. Suppose we have q, r, q′, r′ ∈ Z such that

a = cq + r ; 0 ≤ r < |c|

a = cq′ + r′ ; 0 ≤ r′ < |c|

Then we have

0 = c(q − q′) + r − r′

or

r − r′ = c(q′ − q) .(�)

So r − r′ is divisible by c. But also |r − r′| < |c|. Hence, since 0 is the only non-negative number less than
|c| that is divisible by c, we must have r − r′ = 0. But this with (�) then implies q − q′ = 0. Hence, q = q′

and r = r′. So q and r are unique.

1.1.3
Prove that the square of any integer a is either of the form 3k or of the form 3k +1 for some integer k.

Proof.

By the Division Algorithm, any integer a is representable as

a = 3q + r

with r an integer such that 0 ≤ r < 3. That means r ∈ {0,1, 2}. So a has one of three possible forms

a = 3q + 0(1)

a = 3q + 1(2)

a = 3q + 2(3)

In the first case, a2 = 9q2 = 3(3q2) is obviously of the form 3k, with k = 3q2. In the second case,

a2 = (3q +1)2

= 9q2 + 6q +1

= 3(3q2 + 2q) + 1

and so a2 is of the form 3k +1, with k = 3q2 +2q. In the last case,

a2 = (3q + 2)2

= 9q2 +12q +4

= 3(3q2 + 4q + 1) + 1

a2 is also of the form 3k + 1, with k = 3q2 + 4q +1.

1.1.4
Prove that the cube of any integer has exactly one of the forms 9k, 9k +1, or 9k + 8.

Let a be any integer. Then by the Division Algorithm, a must have one of the following forms

a =




3q
3q +1
3q +2

.

So

a
3 =





27q3 = 9(3q3)
27q3 + 18q2 + 18q + 1 = 9(3q3 +2q2 +2q) + 1
27q3 + 36q2 + 72q + 8 = 9(3q3 +4q2 +8q) + 8
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Problems from Section 1.2

1.2.1

(a) Prove that if a | b and a | c then a | (b + c).

Proof.

If a | b and a | c, then there exist integers q1 and q2 such that

b = q1a

c = q2a

So

b+ c = q1a+ q2a = a(q1 + q2) .

So b+ c is divisible by a.

(b) Prove that if a | b and a | c, then a | (br + ct) for any r, t ∈ Z.

Proof.

Again we have

b = q1a

c = q2a

and so

br + ct = (q1a)r + (q2a)t

= a(q1r + q2t) .

Hence br + ct is divisible by a.

1.2.2
Prove or disprove that if a | (b+ c), then a | b or a | c.

Disproof by counter-example.

Take a = 6, b = c = 3. Then 6 | (3 + 3) but 6 � 3.

1.2.3
Prove that if r ∈ Z is a non-zero solution of x2 + ax+ b = 0 (where a, b ∈ Z), then r | b.

Proof.

By hypothesis,

r2 + ar + b = 0

or

b = r(−r − a) .

It is thus clear that r divides b if r is nonzero.

1.2.4
Prove that GCD(a, a + b) = d if and only if GCD(a, b) = d.
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Proof.

Let

S = {common divisors ofa andb}

T = {common divisors ofa and(a+ b)}

We will show that these two sets coincide.

Suppose s ∈ S. Then there exist x, y ∈ Z such that

a = xs

b = ys

Thus,

a+ b = sx+ sy = s(x+ y) ,

and so a+ b is divisible by s. So any s ∈ S is also an element of T .

Suppose t ∈ T . Then there exist u, v ∈ Z such that

a = ut

a+ b = vt .

Hence,

b = vt − ut = t(v − u) ,

and so b is also divisible by t. So any element t ∈ T is also an element of S.

Thus, S = T . So

GCD(a, b) = Max(S) = Max(T ) = GCD(a, a+ b) .

1.2.5
Prove that if GCD(a, c) = 1 and GCD(b, c) = 1, then GCD(ab, c) = 1.

Proof.

Suppose GCD(a, c) = 1 and GCD(b, c) = 1. Then by Theorem 1.3, there exists integers u, v, x, y such that

1 = ua+ vc

1 = xb+ yc

But then

1 = 1 · 1

= (ua + vc) (xb+ yc)

= (ux) ab+ (uay + vxb+ vyc) c

Thus,

1 = u′(ab) + v′c(4)

with

u′ = ux

v′ = uay + vxb+ vyc .
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Now let t be any common divisor of ab and c. Then, by definition, there exists s, t ∈ Z such that

ab = rt

c = st

So we can rewrite (4) as

1 = u′rt + v′st = (u′r + v′s) t ;

from which it is clear that t | 1. Hence, t = ±1. Hence the greatest common divisor of ab and c is 1.

∗ ∗ ∗ ∗ ∗ ∗ ∗∗

Here is an alternative proof.

First of all, it is clear that if c and b have no common factors, and t is a factor of b, then c and t have no
common factors. Put another way; if t | c and GCD(c, b) = 1 then GCD(t, b) = 1.

Now suppose that d = GCD(c, ab). Then d ≥ 1 and there exist integers x and y such that

c = xd

ab = yd .

Since d | c and GCD(a, c) = 1, by the remark above above, we have GCD(t, a) = 1.

Similarly, t divides c and GCD(b, c) = 1 implies GCD(t, b) = 1.

Now we apply Theorem 1.5.

t | ab and GCD(t, a) = 1 ⇒ t | b.

But GCD(t, b) = 1. Hence t = 1.

1.2.6
(a) Prove that if a, b, u, v ∈ Z are such that au+ bv = 1, then GCD(a, b) = 1.

Proof.

First note that the condition au+ bv = 1 implies that a and b cannot both be zero. According to Corollary
1.4, an integer d is the greatest common divisor of a and b if and only if

(i) d | a and d | b
(ii) if c | a and c | b, then c | d.

Suppose now that d = GCD(a, b) > 1. Then

a = sd

b = td .

But then we have

1 = sdu+ tdv = d(su+ tv)

But now note that the right hand side is divisible by d but the left hand side is not, since d is presummed
to be greater than 1. Hence we have a contradiction unless d = 1.

(b) Show by example that if au+ bv = d > 0, then GCD(a, b) need not be d.

Example.



6

Take a = 3, u = 1, b = 3, v = 1. Then

au+ bv = 5

but

GCD(3, 2) = 1 .

Problems from Section 1.3

1.3.1
Let p be an integer other than 0,±1. Prove that p is prime if and only if for each a ∈ Z, either GCD(a, p) = 1
or p | a.

Proof.

⇒

If p is prime then the only divisors of p are ±1 and ±p. So if s is a common divisor of a and p, then
s ∈ {±1,±p}. Hence either GCD(a, p) = 1 or GCD(a, p) = |p|. In the latter case we have p | a. So either
GCD(a, p) = 1 or p | a.

⇐ (Proof by Contradiction)

Assume p has the property that for every integer a, either GCD(a, p) = 1 or p | a. If p is not prime then
there exist s, t ∈ Z such that

p = st

and

1 < |s| ≤ |t| < |p| .

Since t is a divisor of p, GCD(t, p) = t �= 1. Therefore, p | t. But this is impossible since |t| < |p|. Hence p
must be prime.

1.3.2
Let p be an integer other than 0 ± 1 with this property: Whenever b and c are integers such that p | bc,
then p | c or p | b. Prove that p is prime.

Proof.

Suppose p is an integer �= 0,±1 such that whenever p | bc then p | b or p | c. Let s be a divisor of p. Then
p = sq for some integer q and we have

sq | bc ⇒ sq | b or sq | c

In particular, taking b = s and c = q, we have

sq | s or sq | q .

But this implies either

s = ±1 and q = ±p

or

s = ±p and q = ±1 .

Hence the only divisors of p are ±1 and ±p; and so p is prime.
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1.3.3
Prove that if every integer integer n > 1 can be written in one and only one way in the form

n = p1p2 · · · pr

where the pi are positive primes such that p1 ≤ p2 ≤ · · · ≤ pr.

Proof.

By Theorem 1.11, we know that there exists a prime factorization of n that is unique up to changes in the

order of factors and flips in the sign of pairs of factors. The statement above just removes the remaining

ambiguity in the conclusion of Theorem 1.11. All prime factors are now required to be positive, so there

one cannot flip the sign of terms; and the order of factors is fixed to coincide with their normal ordering as

integers.

1.3.4

Prove that if p is prime and p | an , then p
n | an.

Proof.

According to Corollary 1.9, if p | an, then p | a since an = a · a · a · · · · · a. But then a = pq for some q ∈ Z.
Hence an = pnqn, and so pn divides an.

1.3.5
(a) Prove that there exist no nonzero integers a, b such that a2 = 2b2.

Proof.

According to the Fundamental Theorem of Arithmetic, a and b have prime factorizations of the form

a = p1p2 · · ·pr
b = q1q2 · · · qs .

But then

a
2 = p1p1p2p2 · · ·prpr (2r prime factors)

2b2 = 2q1q1q2q2 · · · qsqs (2s+ 1 prime factors)

Since the two integers a2 and 2b2 have, respectively, an even number and an odd number of prime factors,
a2 can not equal 2b2.

(b) Prove that
√
2 is irrational.

Proof.

Suppose
√
2 is rational; i.e.,

√
2 = a

b
with a, b ∈ Z, b �= 0. Then

√
2b = a

is an integer. Squaring both sides of this equation we get

2b2 = a
2

which as we have just seen cannot be satified by any non-zero integers a and b. Hence we have a contradiction.

So
√
2 can not be rational.


