Solutions to Homework Set 1

1. Prove that

"not-\(Q\) ⇒ not-\(P\)" implies "\(P\) ⇒ \(Q\)."

• In class we proved that

"\(A\) ⇒ \(B\)" implies "not-\(B\) ⇒ not-\(A\)"

Replacing the statement \(A\) by the statement not-\(Q\) and the statement \(B\) by the statement not-\(P\), we have

"not-\(Q\) ⇒ not-\(P\)" implies "not-(not-\(P\)) ⇒ not-(not-\(Q\))".

But

\[\text{not-(not-}P\text{)} = P \quad \text{and} \quad \text{not-(not-}Q\text{)} = Q\]

so

"not-\(Q\) ⇒ not-\(P\)" implies "\(P\) ⇒ \(Q\)."

2. Prove that if \(m\) and \(n\) are even integers, then \(n + m\) is an even integer.

• If \(m\) and \(n\) are even integers, then, by definition, there exist integers \(s\) and \(t\) such that

\[m = 2s, \quad n = 2t\]

But then

\[m + n = 2s + 2t = 2(s + t)\]

so \(m + n\) is divisible by 2 as well. Hence, \(m + n\) is even.

3. Prove that if \(n\) is an odd integer, then \(n^2\) is an odd integer.

• We can assume that \(n = 2k + 1\) for some \(k \in \mathbb{Z}\). (The actual justification for this assumption must be postponed until after we discuss the Division Algorithm for \(\mathbb{Z}\).) But then

\[n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1\]

has the form of an odd integer - and so must be odd.

4. Prove that if \(n\) is an integer and \(n^2\) is odd, then \(n\) is odd.

• (Proof by Contradiction). Suppose, on the contrary, that \(n\) is an integer, \(n^2\) is odd, and \(n\) is not odd. Then \(n\) is even, so \(n = 2k\) and

\[n^2 = (2k)^2 = 2(2k^2)\]

is even, which violates our hypothesis.

5. Prove, by the contrapositive method, that if \(c\) is an odd integer then the equation \(n^2 + n - c = 0\) has no integer solution.

• The contrapositive of the proposition is: "If the equation \(n^2 + n - c = 0\) has an integer solution then \(c\) is not an odd integer".

But if \(n\) is an integer, then so is \(n^2 + n\). Hence \(c = n^2 + n\) must be an integer. Suppose \(n\) is even, then there exists a \(k \in \mathbb{Z}\) such that \(n = 2k\). Hence

\[c = (2k)^2 + 2k = 2(2k^2 + k)\]
is even. Suppose on the other hand, that \(n \) is odd. Then there exists a \(s \in \mathbb{Z} \) such that \(n = 2s + 1 \). But then

\[
c = (2s + 1)^2 + (2s + 1) = 4s^2 + 2s + 1 + 2s + 1 = 2(2s^2 + 2s + 1)
\]

is again even. Hence, whether \(n \) is even or odd, \(c \) must be even; i.e., \(c \) must be not-odd.

6. Prove, by mathematical induction, that if \(n \geq 5 \) then \(2^n > n^2 \).

- Clearly,

\[
2^5 = 32 > 25 = 5^2
\]

We thus only need to show that

\[
"2^n > n^2 \text{ and } n \geq 5" \implies 2^{n+1} > (n+1)^2
\]

Assume

\[
2^n > n^2, \quad n \geq 5
\]

Then

\[
2^n + 2^n > n^2 + n^2
\]

or

\[
(0.1) \quad 2^{n+1} = 2(2^n) = (2^n + 2^n) > n^2 + n^2 = 2n^2
\]

It therefore suffices to check that

\[
(0.2) \quad 2n^2 > (n+1)^2
\]

Expanding, the right hand side of (0.1), we get

\[
2n^2 > n^2 + 2n + 1
\]

or equivalently

\[
(0.3) \quad n^2 > 2n + 1
\]

Statement (eq-0.6.3) is certainly true for \(n = 5 \), since \(25 > 11 \). But note also that if \(n^2 > 2n + 1 \), then adding \(2n + 1 \) to both sides yields

\[
n^2 + 2n + 1 > 2n + 1 + 2n + 1
\]

or

\[
(n + 1)^2 > 2n + 2(n + 1) > 2(n + 1) + 1 \quad \text{if } n > 1
\]

Hence statement (0.3) is thus proved by mathematical induction.

This then implies the validity of (0.2). Combining (0.1) and (0.2) we have

\[
2^{n+1} > 2n^2 > (n+1)^2
\]

hence the original statement is proved via the principal of mathematical induction.

7. Prove by the contrapositive method that if \(c \) is an odd integer, there the equation \(n^2 + n + c = 0 \) has no integer solution for \(n \).

- The premise of this statement is

\[
c \text{ is odd}
\]

and the conclusion is

\[
n^2 + n + c = 0 \text{ has no integer solution}
\]

So the contrapositive of this statement would be

\[
n^2 + n + c = 0 \text{ has an integer solution } \implies c \text{ is not odd}
\]
The equation \(n^2 + n + c = 0 \) implies
\[
c = -n^2 - n.
\]
If \(n \) is integer, then it is either even or odd. If \(n \) is even,
\[
n = 2k
\]
for some \(k \in \mathbb{Z} \), and so
\[
c = -n^2 - n = -4k^2 - 2k = 2(-2k^2 - k)
\]
is even. If \(n \) is odd then
\[
n = 2s + 1
\]
for some \(s \in \mathbb{Z} \), and so
\[
c = -n^2 - n = -(4s^2 + 4s + 1) - (2s + 1) = 2(2s^2 - 3s - 1)
\]
is even. Thus, in either case, \(c \) is not odd. Since the truth of the contrapositive implies the truth of the original statement, the proposition is proved.

8. Prove by mathematical induction that
\[
\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}, \quad \forall n \in \mathbb{Z}^+.
\]

- Let \(S(n) \) be the statement
\[
\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}
\]
We need to show two things: (i) The statement \(S(1) \) is true. (ii) The truth of statement \(S(n) \) implies the truth of statement \(S(n+1) \).

The first is easy.
\[
\sum_{i=1}^{1} i^2 = 1 = \frac{1(1+1)(2+1)}{6}.
\]

As for (ii), assume that \(S(n) \) is true. Then
\[
\sum_{i=1}^{n+1} i^2 = \sum_{i=1}^{n} i^2 + (n+1)^2
= \frac{n(n+1)(2n+1)}{6} + (n+1)^2
= \frac{n(n+1)(2n+1)+6(n+1)^2}{6}
= \frac{(n+1)(n(2n+1)+6(n+1))}{6}
= \frac{(n+1)(2n^2 + 7n + 6)}{6}
= \frac{(n+1)(n+2)(2n+3)}{6}
= \frac{(n+1)((n+1)+1)(2(n+1)+1)}{6},
\]
which is just the statement \(S(n+1) \).

9. Prove the following identities.

(a) \[B \cap (C \cup D) = (B \cap C) \cup (B \cap D) \]
10. Describe each set in set-builder notation:

(a) All positive real numbers.

\[\{ x \mid x \in \mathbb{R}, x > 0 \} \]

(b) All negative irrational numbers.

\[\{ x \mid x \in \mathbb{R}, x < 0, x \notin \mathbb{Q} \} \]

(c) All points in the coordinate plane with rational first coordinate.

\[\{(x, y) \mid x \in \mathbb{Q}, y \in \mathbb{R} \} \]

(d) All negative even integers greater than -50.

\[(b) \quad B \cup (C \cap D) = (B \cup C) \cap (B \cup D) \]

\[
B \cap (C \cup D) = \{ z \in B \text{ and } z \in C \cup D \}
= \{ z \in B \text{ and } (z \in C \text{ or } z \in D) \}
= \{ (z \in B \text{ and } z \in C) \text{ or } (z \in B \text{ and } z \in D) \}
= (B \cap C) \cup (B \cap D)
\]

\[
B \cup (C \cap D) = \{ z \in B \text{ or } z \in C \cap D \}
= \{ z \in B \text{ or } (z \in C \text{ and } z \in D) \}
= \{ (z \in B \text{ or } z \in C) \text{ and } (z \in B \text{ or } z \in D) \}
= (B \cup C) \cap (B \cup D)
\]

\[
(C \setminus A) \cup (C \cap A) = \{ z \in C \text{ and } z \notin A \} \cup \{ z \in C \text{ and } z \in A \}
= \{ (z \in C \text{ and } z \notin A) \text{ or } (z \in C \text{ and } z \in A) \}
= \{ z \in C \}
= C
\]
11. Which of the following sets are nonempty?

 (a) \(\{ r \in \mathbb{Q} \mid r^2 = 2 \} \)

 • This set is empty because neither of the roots of \(r^2 = 2 \) is rational.

 (b) \(\{ r \in \mathbb{R} \mid r^2 + 5r - 7 = 0 \} \)

 • The quadratic formula gives us the roots of \(r^2 + 5r - 7 = 0 \). They are \(r_\pm = \frac{-5 \pm \sqrt{25 + 28}}{2} = \frac{-5 \pm \sqrt{53}}{2} \) and they are both real numbers. Therefore this set is non-empty.

 (c) \(\{ t \in \mathbb{Z} \mid 6t^2 - t - 1 = 0 \} \)

 • We have \(6t^2 - t - 1 = (3t + 1)(2t - 1) \) and so the roots of \(6t^2 - t - 1 = 0 \) are \(t = -\frac{1}{3}, \frac{1}{2} \); neither of which is an integer. Therefore this set is empty.

12. Is \(B \) a subset of \(C \) when

 (a) \(B = \mathbb{Z} \) and \(C = \mathbb{Q} \)?

 • Yes, every integer is also a rational number.

 (b) \(B = \mathbb{R} \) and \(C = \mathbb{Q} \)?

 • The solutions of \(x^2 + 2x - 5 = 0 \) are \(x_\pm = \frac{-2 \pm \sqrt{4 + 20}}{2} = -1 \pm \frac{\sqrt{24}}{2} = -1 \pm \sqrt{6} \); neither of which is an integer. and so \(B \) is not a subset of \(C \).

 (c) \(B = \{ a, b, 7, 9, 11, -6 \} \) and \(C = \mathbb{Q} \)?

 • The letters \(a \) and \(b \) are not rational numbers. Hence there are two elements of \(B \) that do not lie in \(C \). Hence \(B \) is not a subset of \(C \).

13. In each part find \(B - C \), \(B \cap C \), and \(B \cup C \).

 (a) \(B = \mathbb{Z} \) and \(C = \mathbb{Q} \).

 • Since every element of \(\mathbb{Z} \) is an element of \(\mathbb{Q} \) we have

 \[
 B - C = \{ \} \quad B \cap C = B = \mathbb{Z} \quad B \cup C = C = \mathbb{Q}
 \]

 (b) \(B = \mathbb{R} \) and \(C = \mathbb{Q} \).
• In this case, every element of $C = \mathbb{Q}$ is an element of $B = \mathbb{R}$

$$B - C = \{x \mid x \in \mathbb{R}, x \notin \mathbb{Q}\}$$

$$B \cap C = C = \mathbb{Q}$$

$$B \cup C = B = \mathbb{R}$$

(c) $B = \{a, b, c, 1, 2, 3, 4, 5, 6\}$ and $C = \{a, c, 2, 4, 6, 8\}$.

•

$$B - C = \{b, 1, 3, 5\}$$

$$B \cap C = \{a, c, 2, 4, 6\}$$

$$B \cup C = \{a, b, c, 1, 2, 3, 4, 5, 6, 8\}$$

14. Let A, B be subsets of U. Prove De Morgan’s laws:

(a) $U - (A \cap B) = (U - A) \cup (U - B)$

- We need to show that $U - (A \cap B)$ is a subset of $(U - A) \cup (U - B)$ and that $(U - A) \cup (U - B)$ is a subset of $U - (A \cap B)$

$$U - (A \cap B) \subseteq (U - A) \cup (U - B)$$

$$x \in U - (A \cap B)$$

$$\Rightarrow \quad x \in U \quad \text{and} \quad x \notin A \cap B$$

$$\Rightarrow \quad x \in U \quad \text{and} \quad (x \notin A \quad \text{or} \quad x \notin B)$$

$$\Rightarrow \quad (x \in U \quad \text{and} \quad x \notin A) \quad \text{or} \quad (x \in U \quad \text{and} \quad x \notin B)$$

$$\Rightarrow \quad (x \in U - A) \quad \text{or} \quad (x \in U - B)$$

$$\Rightarrow \quad x \in (U - A) \cup (U - B)$$

The key step here was in passing from the third line to the fourth, where we employed the “distributive law of logic”:

$$A \quad \text{and} \quad (B \quad \text{or} \quad C) \quad \Rightarrow \quad (A \quad \text{and} \quad B) \quad \text{or} \quad (A \quad \text{and} \quad C)$$

$$\quad \text{and}$$

$$- \quad (U - A) \cup (U - B) \subseteq U - (A \cap B)$$

- The argument we use here is just the reverse of the sequence of arguments we used above:

$$x \in x \in (U - A) \cup (U - B)$$

$$\Rightarrow \quad (x \in U - A) \quad \text{or} \quad (x \in U - B)$$

$$\Rightarrow \quad (x \in U \quad \text{and} \quad x \notin A) \quad \text{or} \quad (x \in U \quad \text{and} \quad x \notin B)$$

$$\Rightarrow \quad x \in U \quad \text{and} \quad (x \notin A \quad \text{or} \quad x \notin B)$$

$$\Rightarrow \quad x \in U \quad \text{and} \quad x \notin A \cap B$$

$$\Rightarrow \quad x \in U - (A \cap B)$$

(b) $U - (A \cup B) = (U - A) \cap (U - B)$
• We need to show that $U - (A \cup B)$ is a subset of $(U - A) \cap (U - B)$ and $(U - A) \cap (U - B)$ is a subset of $U - (A \cup B)$. This time we’ll argue a bit more efficiently using biconditional statements.

$$x \in U - (A \cup B)$$

\Leftrightarrow \hspace{1em} $x \in U$ and $x \notin (A \cup B)$

\Leftrightarrow \hspace{1em} $x \in U$ and ($x \notin A$ and $x \notin B$)

\Leftrightarrow \hspace{1em} ($x \in U$ and $x \notin A$) and ($x \in U$ and $x \notin B$)

\Leftrightarrow \hspace{1em} ($x \in U - A$) and ($x \in U - B$)

\Leftrightarrow \hspace{1em} $x \in (U - A) \cap (U - B)$

15.

(a) Give an example of a function that is injective but not surjective.

• The natural inclusion map $i : \mathbb{Z} \to \mathbb{R}$ is injective but not surjective.

(b) Give an example of a function that is surjective but not injective.

• Let A denote the set of nonzero real numbers, and let B denote the set of positive real numbers. Then

$$f : A \to B : \hspace{1em} x \mapsto x^2$$

is surjective, but not injective ($f(-x) = f(x)$, but $x \neq -x$).

16. Prove that $f : \mathbb{R} \to \mathbb{R}$: $f(x) = x^3$ is injective.

• According to Descartes’ Sign Rule, the number of real roots of a polynomial equation is less than or equal to the number of sign changes in the coefficients. So, the number of real solutions of $x^3 = C$ is less than or equal to 1. If $(x_1)^3 = (x_2)^3$ then $x_1 = x_2$. Hence, f is injective.

17. Prove that $f : \mathbb{R} \to \mathbb{R}$: $f(x) = -3x + 5$ is surjective.

• Let y be an arbitrary element of the range of f. We need to show that there is an $x \in \mathbb{R}$ such that $y = f(x)$. We’ll do this constructively by solving the equation $y = -3x + 5$ for y. One has

$$y = -3x + 5 \Leftrightarrow \hspace{1em} \frac{1}{3}(y - 5) = x$$

and so for any $y \in \mathbb{R}$

$$y = f \left(\frac{1}{3}(y - 5) \right) \in \text{Im}(f)$$

18.

Let B and C be nonempty sets. Prove that the function

$$f : B \times C \to C \times B$$
given by $f(x, y) = (y, x)$ is a bijection.

• (i) f is a injection.

Suppose $f(x_1, y_1) = f(x_2, y_2)$. Then $(y_1, x_1) = (y_2, x_2)$, so $y_1 = y_2$ and $x_1 = x_2$, hence $(x_1, y_1) = (x_2, y_2)$.
• (ii) f is a surjection.

Consider an arbitrary element $(y, x) \in C \times B$. Evidently, $(y, x) = f(x, y)$, so $(y, x) \in \text{Image}(f)$. Hence, f is surjective.