
Solutions to Homework Set 1

1. Prove that

“not-Q ⇒ not-P” implies “P ⇒ Q”.

• In class we proved that

“A ⇒ B” implies “not-B ⇒ not-A”

Replacing the statement A by the statement not-Q and the statement B by the statement not-P ,
we have

“not-Q ⇒ not-P” implies “not-(not-P ) ⇒ not-(not-Q)”.

But

not-(not-P ) = P and not-(not-Q) = Q ,

so

“not-Q ⇒ not-P” implies “P ⇒ Q”.

2. Prove that if m and n are even integers, then n+m is an even integer.

• If m and n are even integers, then, by definition, there exist integers s and t such that

m = 2s , n = 2t .

But then

m+ n = 2s+2t = 2(s+ t) ,

so m+ n is divisible by 2 as well. Hence, m+ n is even.

3. Prove that if n is an odd integer, then n2 is an odd integer.

• We can assume that n = 2k + 1 for some k ∈ Z. (The actual justication for this assumption must
be postponed until after we discuss the Division Algorithm for Z). But then

n
2 = (2k +1)2 = 4k2 + 4k +1 = 2

(
2k2 +2k

)
+ 1

has the form of an odd integer - and so must be odd.

4. Prove that if n is an integer and n
2 is odd, then n is odd.

• (Proof by Contradiction). Suppose, on the contrary, that n is an integer, n2 is odd, and n is not
odd. Then n is even, so n = 2k and

n
2 = (2k)2 = 2

(
2k2

)

is even, which violates our hypothesis.

5. Prove, by the contrapositive method, that if c is an odd integer then the equation n
2 + n− c = 0 has no

integer solution.

• The contrapositive of the proposition is: “If the equation n
2+n− c = 0 has an integer solution then

c is not an odd integer”.
But if n is an integer, then so is n

2 + n. Hence c = n
2 + n must be an integer. Suppose n is

even, then there exists a k ∈ Z such that n = 2k. Hence

c = (2k)2 + 2k = 2
(
2k2 + k

)
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is even. Suppose on the other hand, that n is odd. Then there exists a s ∈ Z such that n = 2s+ 1.
But then

c = (2s+1)2 + (2s+ 1) = 4s2 + 2s+ 1 + 2s+ 1 = 2
(
2s2 +2s+1

)

is again even. Hence, whether n is even or odd, c must be even; i.e., c must be not-odd.

6. Prove, by mathematical induction, that if n ≥ 5 then 2n > n2.

• Clearly,

25 = 32 > 25 = 52 .

We thus only need to show that

“2n > n2 and n ≥ 5” ⇒ 2n+1 > (n+1)2 .

Assume

2n > n2 , n ≥ 5 .

Then

2n +2n > n
2 + n

2

or

2n+1 = 2 (2n) = (2n +2n) > n2 + n2 = 2n2 .(0.1)

It therefore suffices to check that

2n2 >? (n+1)2 .(0.2)

Expanding, the right hand side of (0.1), we get

2n2 >? n2 + 2n +1

or equivalently

n2 >? 2n +1 .(0.3)

Statement (eq-0.6.3) is certainly true for n = 5, since 25 > 11. But note also that if n2 > 2n+1,
then adding 2n+ 1 to both sides yields

n2 + 2n+1 > 2n+ 1 + 2n+ 1

or

(n+ 1)2 > 2n+2(n+ 1) > 2(n+ 1) + 1 ifn > 1 .

Hence statement (0.3) is thus proved by mathematical induction.
This then implies the validity of (0.2). Combining (0.1) and (0.2) we have

2n+1 > 2n2 > (n+ 1)2 ,

hence the original statement is proved via the principal of mathematical induction.

7. Prove by the contrapositive method that if c is an odd integer, there the equation n2 + n+ c = 0 has no
integer solution for n.

• The premise of this statement is

c is odd

and the conclusion is

n2 + n+ c = 0 has no integer solution

So the contrapositive of this statement would be

n2 + n + c = 0 has an integer solution ⇒ c is not odd
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The equation n2 + n+ c = 0 implies

c = −n2 − n .

If n is integer, then it is either even or odd. If n is even,

n = 2k

for some k ∈ Z, and so

c = −n2 − n = −4k2 − 2k = 2(−2k2 − k)

is even. If n is odd then

n = 2s+ 1

for some s ∈ Z, and so

c = −n2 − n = −
(
4s2 +4s+1

)
− (2s+ 1) = 2

(
2s2 − 3s− 1

)

is even. Thus, in either case, c is not odd. Since the truth of the contrapositive implies the truth of
the original statement, the proposition is proved.

8. Prove by mathematical induction that
n∑

i=1

i2 =
n(n+ 1)(2n+1)

6
, ∀ n ∈ Z+ .

• Let S(n) be the statement
n∑

i=1

i2 =
n(n+1)(2n+ 1)

g

We need to show two things. ı(i) The statement S(1) is true. ı(ii) The truth of statement S(n)
implies the truth of statement S(n+1).

The first is easy.

1∑

i=1

i2 = 1 =
6

6
=

(1)(1 + 1)(2 + 1)

6
.

As for (??), assume that S(n) is true. Then

n+1∑

i=1

i2 =
n∑

i=1

i2 + (n+1)2

=
n(n+ 1)(2n +1)

6
+ (n+ 1)2

=
n(n+ 1)(2n +1) + 6(n+1)2

6

=
(n+ 1) (n(2n+1) + 6(n+1))

6

=
(n+ 1)(2n2 + 7n+6)

6

=
(n+ 1)(n+2)(2n+ 3)

6

=
(n+ 1) ((n+ 1) + 1) (2(n+ 1) + 1)

6
,

which is just the statement S(n+1).

9. Prove the following identities.

(a) B ∩ (C ∪D) = (B ∩ C) ∪ (B ∩D)
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•

B ∩ (C ∪D) = {z ∈ B andz ∈ C ∪D}

= {z ∈ B and (z ∈ C orz ∈ D)}

= {(z ∈ B and z ∈ C) or (z ∈ B andz ∈ D)}

= (B ∩ C) ∪ (B ∩D)

(b) B ∪ (C ∩D) = (B ∪ C) ∩ (B ∪D)

•

B ∪ (C ∩D) = {z ∈ B orz ∈ C ∩D}

= {z ∈ B or (z ∈ C andz ∈ D)}

= {(z ∈ B or z ∈ C) and (z ∈ B orz ∈ D)}

= (B ∪ C) ∩ (B ∪D)

(c) C = (C −A) ∪ (C ∩A)

•

(C −A) ∪ (C ∩A) = {z ∈ C andz /∈ A} ∪ {z ∈ C andz ∈ A}

= {(z ∈ C andz /∈ A) or (z ∈ C andz ∈ A)}

= {z ∈ C}

= C

10. Describe each set in set-builder notation:

(a) All positive real numbers.

•

{x | x ∈ R , x > 0}

(b) All negative irrational numbers.

•

{x | x ∈ R , x < 0 , x /∈ Q}

(c) All points in the coordinate plane with rational first coordinate.

•

{(x, y) | x ∈ Q , y ∈ R}

(d) All negative even integers greater than −50.
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•

{2k | k ∈ Z , −25 < k < 0}

11. Which of the following sets are nonempty?

(a)
{
r ∈ Q | r2 = 2

}

• This set is empty because neither of the roots of r2 = 2 is rational

(b)
{
r ∈ R | r2 + 5r − 7 = 0

}

• The quadratic formula gives us the roots of r2 +5r − 7 = 0. They are r± = −5±√25−28
2

= −5

2
±

√
3

2

and they are both real numbers. Therefore this set is non-empty.

(c)
{
t ∈ Z | 6t2 − t− 1 = 0

}

• We have 6t2 − t− 1 = (3t+1) (2t− 1) and so the roots of 6t2 − t− 1 = 0 are t = − 1

3
, 1
2
; neither of

which is an integer. Therefore this set is empty.

12. Is B is a subset of C when

(a) B = Z and C = Q?

• Yes, every integer is also a rational number.

(b) B = all solutions of x2 + 2x− 5 = 0 and C = Z?

• The solutions of x2 +2x− 5 = 0 are x± = −2±√4+20
2

= −1±
√
24

2
= −1±√

6; neither of which is an
integer. and so B is not a subset of C.

(c) B = {a, b, 7,9,11,−6} and C = Q?

• The letters a and b are not rational numbers. Hence there are two elements of B that do not lie in
C. Hence B is not a subset of C.

13. In each part find B −C, B ∩ C, and B ∪ C.

(a) B = Z and C = Q.

• Since every element of Z is an element of Q we have

B − C = {}
B ∩ C = B = Z

B ∪ C = C = Q

(b) B = R and C = Q.
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• In this case, every element of C = Q is an element of B = R

B − C = {x | x ∈ R , x /∈ Q}
B ∩ C = C = Q

B ∪ C = B = R

(c) B = {a, b, c,1, 2, 3, 4,5,6} and C = {a, c, e, 2, 4,6,8}.

•

B − C = {b,1, 3, 5}

B ∩ C = {a, c,2,4,6}

B ∪ C = {a, b, c, e,1,2,3, 4, 5,6,8}

14. Let A,B be subsets of U . Prove De Morgan’s laws:

(a) U − (A∩B) = (U −A) ∪ (U −B)

• We need to show that U − (A∩B) is a subset of (U −A) ∪ (U −B) and that (U −A) ∪ (U −B) is
a subset of U − (A∩B)

— U − (A∩B) ⊂ (U −A) ∪ (U −B)

x ∈ U − (A∩B)

⇒ x ∈ U and x /∈ A∩B

⇒ x ∈ U and (x /∈ A or x /∈ B)

⇒ (x ∈ U and x /∈ A) or (x ∈ U and x /∈ B)

⇒ (x ∈ U −A) or (x ∈ U −B)

⇒ x ∈ (U −A) ∪ (U −B)

The key step here was in passing from the third line to the fourth, where we employed the
“distributive law of logic”:

A and (B or C) ⇔ (A and B) or (A and C)

— (U −A) ∪ (U −B) ⊂ U − (A∩B)
The argument we use here is just the reverse of the sequence of arguments we used above:

x ∈ x ∈ (U −A) ∪ (U −B)

⇒ (x ∈ U −A) or (x ∈ U −B)

⇒ (x ∈ U and x /∈ A) or (x ∈ U and x /∈ B)

⇒ x ∈ U and (x /∈ A or x /∈ B)

⇒ x ∈ U and x /∈ A∩B

⇒ x ∈ U − (A∩B)

(b) U − (A∪B) = (U −A) ∩ (U −B)
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• We need to show that U − (A ∪B) is a subset of (U −A) ∩ (U −B) and (U −A) ∩ (U −B) is a
subset of U − (A∪B). This time we’ll argue a bit more efficiently using biconditional statements.

x ∈ U − (A ∪B)

⇔ x ∈ U and x /∈ (A∪B)

⇔ x ∈ U and (x /∈ A and x /∈ B)

⇔ (x ∈ U and x /∈ A) and (x ∈ U and x /∈ B)

⇔ (x ∈ U −A) and (x ∈ U −B)

⇔ x ∈ (U −A) ∩ (U −B)

15.
(a) Give an example of a function that is injective but not surjective.

• The natural inclusion map i : Z → R is injective but not surjective.

(b) Give and example of a function that is surjective but not injective.

• Let A denote the set of nonzero real numbers, and let B denote the set of positive real numbers.
Then

f : A → B ; x �→ x2

is surjective, but not injective (f(−x) = f(x), but x �= −x).

16. Prove that f : R→ R : f (x) = x3 is injective.

• According to Descartes’ Sign Rule, the number of real roots of a polynomial equation is less than or
equal to the number of sign changes in the coefficients. So, the number of real solutions of x3 = C

is less than or equal to 1. If (x1)
3 = (x2)

3 then x1 = x2. Hence, f is injective.

17. Prove that f : R→ R : f(x) = −3x+ 5 is surjective.

• Let y be an arbitray element of the range of f . We need to show that there is an x ∈ R such that
y = f (x). We’ll do this constructively by solving the equation y = −3x+5 for y. One has

y = −3x+5 ⇔ −
1

3
(y − 5) = x

and so for any y ∈ R

y = f

(
−
1

3
(y − 5)

)
∈ Im (f)

18.
Let B and C be nonempty sets. Prove that the function

f : B × C → C ×B

given by f (x, y) = (y, x) is a bijection.

• (i) f is a injection.
Suppose f (x1, y1) = f (x2, y2). Then (y1, x1) = (y2, x2), so y1 = y2 and x1 = x2, hence

(x1, y1) = (x2, y2).
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• (ii) f is a surjection.
Consider an arbitrary element (y, x) ∈ C ×B. Evidently, (y,x) = f (x, y), so (y,x) ∈ Image(f).

Hence, f is surjective.


