
Math 3613
Solutions to Second Exam

November 22, 2013

1. Definitions

(a) (4 pts) What precisely do we mean when we say a is congruent to b modulo n (i.e. a ≡ b (mod n))?

• a is congruent to b modulo n means the difference a− b is an integer multiple of n.

(b) (5 pts) Suppose R is a set with two operations defined: “addition” ⊕ : R×R→ R and “multiplication”
⊗ : R × R → R and “multiplication”. What additional properties are required so that R is a ring? (Hint:
there are six additional required properties.)

• a + b = b + a for all a, b ∈ R (commutativity of addition)
• a + (b + c) = (a + b) + c , for all a, b, c ∈ R (associativity of addition)
• There exists 0R ∈ R such that a + 0R = a for all a ∈ R (existence of an additive identity)
• For each a ∈ R, there exists an element −a ∈ R such that a + (−a) = 0R (existence of additive

inverses)
• For each a, b, c ∈ R, a(bc) = (ab) c (associativity of multiplication)
• For each a, b, c ∈ R, a (b + c) = (ab) + (ac) (distributativity of multiplication over addition)

(c) (4 pts) What is an integral domain?

• a non-zero commutative ring with identity and without any zero divisors.

(d) (4 pts) What is a homomorphism between two rings?

• a mapping f : R → S between two rings such that for all r, r′ ∈ R, one has both f (r +R r′) =
f (r) +S f (r′) and f (r ×R r′) = f (r)×S f (r′).

(e) (4pts) What is the greatest common divisor of two polynomials over a field F?

• The monic polynomial of highest degree that divides both f and g.

(f) (4pts) What is an irreducible polynomial?

• a nonconstant polynomial f whose only divisors are the non-zero constants and the associates of f .

Due to a typo in numbering there was no problem 2 on the exam.
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3. (15 pts) Suppose GCD (a, n) = 1. Prove that [a]n is a unit in Zn.

• By Theorem 1.3, there exist integers u and v such that

1 = GCD (a, n) = ua + nv ⇒ ua− 1 = nv

If we now descend to congruence classes modulo n

ua− 1 = nv ⇒ [ua− 1]n = [nv]n ⇒ [u]n [a]n − [1]n = [0]n ⇒ [u]n [a]n = [1]n

and so [a]n is a unit in Zn.

4 . (15 pts) Suppose S is a nonempty subset of a ring R such that

a− b ∈ S for all a, b ∈ S(i)

ab ∈ S for all a, b ∈ S(ii)

Show that S is a subring of R.

• So that we can invoke Theorem 3.3, we need to show (a) a + b ∈ S for all a, b ∈ S, (b) ab ∈ S for
all a, b ∈ S and (c) a ∈ S implies −a ∈ S. (b) is already identical to (ii). So we just need to show
that (i) implies (a) and (c).

Step 1. Show 0R ∈ S. Choose b = a in (i). Then

a− a ∈ S ⇒ 0R ∈ S

Step 2. Show if b ∈ S, then −b ∈ S. Choose a = 0R ∈ S (valid by Step 1). (This step verifies (c).)

0R − b ∈ S ⇒ −b ∈ S

Step 3. Show a + b ∈ S. By Step 2, b ∈ S ⇒ −b ∈ S, and so by assumption (i),

a− (−b) ∈ S ⇒ a + b ∈ S

verifiying (a).

5. (15 pts) Let R and S be rings and f : R→ S a ring homomorphism. Prove that

f (R) = {s ∈ S | s = f (r) for some r ∈ R}
is a subring of S.

• We need to verify the three properties of a subring (as in Theorem 3.3). Suppose s, s′ ∈ f (R).
Then s = f (r) for some r ∈ R and s′ = f (r′) for some r′ ∈ R.

s + s′ = f (r) + f (r′) = f (r + r′) because f is a ring homomorphism

⇒ s + s′ ∈ S ⇒ closure under addition

s · s′ = f (r) · f (r′) = f (r · r′) because f is a ring homomorphism

⇒ s · s′ ∈ S ⇒ closure under multiplication

−s = −f (r) = f (−r) by Theorem 3.11 (ii)

⇒ S is closed under taking additive inversse.
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6. (15 pts) Let F be a field and f, g ∈ F [x]. Prove that f and g are associates if and only if f |g and g|f .

• ⇒ Suppose f and g are associates. Then by definition, there exists a nonzero constant c ∈ F such
that

g = cf ⇒ f |g
g = cf ⇒ f = c−1g ⇒ g|f

• ⇐= Suppose f |g and g|f . Then there exist polynomials s and t such that

f = sg and g = tf

If we take degrees on both sides of these equations (using Theorem 4.1)

deg (f) = deg (s) + deg (g) ⇒ deg (f) ≤ deg (g)

deg (g) = deg (t) + deg (f) ⇒ deg (g) ≤ deg (f)

But then if both these inequalities are to be satisfied, we must have deg (f) = deg (g), and so
deg (s) = deg (t) = 0. That means s and t are constants, and so f and g are associates.

7. (15 pts) Let F be a field and let f, g, h ∈ F [x] with f and g relatively prime. Suppose further f | h and
g | h. Show that (fg) | h.

• Since f and g are relatively prime, by Theorem 4.4 there exists polynomials u and v such that

1 = GCD (f, g) = uf + vg.

Multiplying the extreme sides of this equation by h we get

(*) h = ufh + vgh

Next, we note

f |h ⇒ h = sf for some polynomial s

g|h ⇒ h = tg for some polynomal t

We can thus substitute for h in two different way on the right hand side of (*) to get

h = uf (tg) + vg (sf) = (ut + vs) (fg) ⇒ (fg) |h


