LECTURE 25

Examples of Groups and Group Properties

EXAMPLE 25.1. Show that the set of matrices

$$S = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \mid a, b, c, d \in \mathbb{R} \ , \ ad - bc <> 0 \right\}$$

is a group when the multiplication rule is matrix multiplication.

We need to show three things: (i) that the multiplication rule is associative, (ii) that S has a multiplicative identity element, and (iii) that every element $A \in S$ has a multiplicative inverse in S.

(i) The multiplication rule for S is associative because matrix multiplication is associative.

(ii) The matrix $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is in S and has the property that AI = A = IA. So S has I as its identity element.

(iii) If $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, then det A = ad - bc. From Linear Algebra one know that det $A \neq 0 \iff A^{-1}$ exists. Moreover,

$$\det (A^{-1}) = \frac{1}{\det (A)} = \frac{1}{ad - bc} \neq 0$$

so $A^{-1} \in S$. Hence, every element of S has an inverse in S.

Having verified the three defining properties of a group, we conclude S is a group.

EXAMPLE 25.2. Show that the set

$$U_n = \{ u \in \mathbb{Z}_n \mid u \text{ is a unit in } \mathbb{Z}_n \}$$

is a group when group multiplication is the usual multiplication in \mathbb{Z}_n .

(i) Multiplication in \mathbb{Z}_n is associative and the multiplication rule in U_n is associative.

(ii) The element $[1]_n \in \mathbb{Z}_n$ is a unit in \mathbb{Z}_n . (Recall a *unit* in a ring R with identity 1_R is an element $a \in R$ such that there exists $b, b' \in R$ such that $ab = 1_R = b'a$.) Clearly, $[1]_n$ is the multiplicative identity in U_n since $[1]_n [1]_n = [1_n]_n$.

(iii) If $a \in U_n$ then a is a unit in \mathbb{Z}_n and so there exists $b \in \mathbb{Z}_n$ such that $ab = [1]_n$, hence a has a multiplicative inverse b and, moreover, this inverse is also a unit in \mathbb{Z}_n and so belongs to U_n .

EXAMPLE 25.3. What is the order of U_p when p is prime?

The order of a group is the number of elements in the group (as a set). Now we know that Z_p has exactly p elements $[0]_p, [1]_p, \ldots, [p-1]_p$. Morever, since \mathbb{Z}_p is a field when p is prime, every nonzero element of \mathbb{Z}_p is a unit. This means U_n consists of every element of \mathbb{Z}_p except $[0]_p$. Thus, the order of U_p is p-1.

EXAMPLE 25.4. Prove that the order of a^{-1} is equal to the order of a^{-1} .

Suppose first that a is of finite order. Then there exists a smallest positive integer n such that $a^n = e$. Since

$$e = a^n = a \left(a\right)^{n-1}$$

we know $a^{n-1} = a^{-1}$. But then

$$(a^{-1})^n = (a^{n-1})^n = a^{n(n-1)} = (a^n)^{n-1} = (e)^{n-1} = e^{n-1}$$

and so a^{-1} has finite order $\leq n$.

The problem is now to show that n is in fact the smallest power of a^{-1} that produces the identity element e. Suppose the order of a^{-1} is $k \leq n$. Then

$$e = (a^{-1})^k = (a^{n-1})^k = a^{kn-k} \implies a^k = a^k e = a^k a^{kn-k} = a^{kn-k}$$

Now according to Theorem 7.8, if a has order n, then $a^i = a^j \iff i \equiv j \pmod{n}$. So

 $a^k = a^{kn} \implies k = kn \pmod{n} \implies k = 0 \pmod{n} \implies k = pn$ for some positive integer pBut the only positive multiple of n that's less than or equal to n is n itself. Therefore, k = n, and $|a^{-1}| = |a|$. EXAMPLE 25.5. Let G be a group and let $a \in G$. Prove that the set

$$N_a \equiv \{g \in G \mid ga = ag\}$$

is a subgroup of G.

We need to show three things: (i) that N_a is closed under multiplication, (ii) that the identity element of G is in N_a and (iii) that if $g \in N_a$, then $g^{-1} \in N_a$.

(i) N_a is closed under multiplication: Suppose $g, g' \in N_a$. Then

$$(gg') a = g(g'a) = g(ag') = (ga) g' = (ag) g' = a(gg')$$

and so $gg' \in N_a$.

- (ii) Clearly, ea = a = ae and so $e \in N_a$.
- (iii) Suppose $g \in N_a$. Then

ga = ag

Multiplying this equation from the left by g^{-1} yields

$$a = g^{-1}ga = g^{-1}ag$$

Multiplying the extreme sides of the above equation from the right by g^{-1} yields

$$ag^{-1} = g^{-1}agg^{-1} = g^{-1}ae = g^{-1}a \implies ag^{-1} = g^{-1}a \implies g^{-1} \in N_a$$

And so if $g \in N_a$, $g^{-1} \in N_a$.

<==

EXAMPLE 25.6. Prove that H is a subgroup of a group G if and only if $ab^{-1} \in H$ for all $a, b \in H$.

Choosing $b = a \in H$, we have $aa^{-1} \in H$. But $aa^{-1} = e$ and so $e \in H$. This proves (ii).

Now choosing a = e (which we now know belongs to H) we have $eb^{-1} = b^{-1} \in H$ for all $b \in H$. And so we have property (iii).

It remains to prove that $ab \in H$ whenever $a, b \in H$. But by (iii) just proven, if $b \in H$, then $b^{-1} \in H$ and so

$$a(b^{-1})^{-1} \in H \implies ab \in H$$

Suppose $ab^{-1} \in H$ for all a, b in H. We need to show the criteria (i), (ii), (iii) of the previous hold.

 \Longrightarrow

Assume H is a subgroup of G. Then if a, b are in H, so are a^{-1} and b^{-1} since subgroups are closed under multiplicative inverses. But then

 $ab^{-1} \in H$ since subgroups are closed under multiplication.