
LECTURE 25

Examples of Groups and Group Properties

Example 25.1. Show that the set of matrices

S =
{(

a b
c d

)
| a, b, c, d ∈ R , ad− bc <> 0

}
is a group when the multiplication rule is matrix multiplication.

We need to show three things: (i) that the multiplication rule is associative, (ii) that S has a multiplicative
identity element, and (iii) that every element A ∈ S has a multiplicative invers in S.

(i) The multiplication rule for S is associative because matrix multiplication is associative.

(ii) The matrix I =
(

1 0
0 1

)
is in S and has the property that AI = A = IA. So S has I as its identity

element.

(iii) If A =
(

a b
c d

)
, then det A = ad − bc. From Linear Algebra one know that det A 6= 0 ⇐⇒ A−1

exists. Moreover,

det
(
A−1

)
=

1
det (A)

=
1

ad− bc
6= 0

so A−1 ∈ S. Hence, every element of S has an inverse in S.

Having verified the three defining properties of a group, we conclude S is a group.

Example 25.2. Show that the set

Un = {u ∈ Zn | u is a unit in Zn}

is a group when group multiplication is the usual multiplication in Zn.

(i) Multiplication in Zn is associative and the multiplication rule in Un is associative.

(ii) The element [1]n ∈ Zn is a unit in Zn. (Recall a unit in a ring R with identity 1R is an element a ∈ R
such that there exists b, b′ ∈ R such that ab = 1R = b′a.) Clearly, [1]n is the multiplicative identity in Un

since [1]n [1]n = [1n]n.

(iii) If a ∈ Un then a is a unit in Zn and so there exists b ∈ Zn such that ab = [1]n, hence a has a
multiplicative inverse b and, moreover, this inverse is also a unit in Zn and so belongs to Un.

Example 25.3. What is the order of Up when p is prime?

The order of a group is the number of elements in the group (as a set). Now we know that Zp has exactly
p elements [0]p , [1]p , . . . , [p− 1]p. Morever, since Zp is a field when p is prime, every nonzero element of Zp

is a unit. This means Un consists of every element of Zp except [0]p. Thus, the order of Up is p− 1.

Example 25.4. Prove that the order of a−1 is equal to the order of a−1.
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Suppose first that a is of finite order. Then there exists a smallest positive integer n such that an = e. Since

e = an = a (a)n−1

we know an−1 = a−1. But then(
a−1

)n
=

(
an−1

)n
= an(n−1) = (an)n−1 = (e)n−1 = e

and so a−1 has finite order ≤ n.

The problem is now to show that n is in fact the smallest power of a−1 that produces the identity element
e. Suppose the order of a−1 is k ≤ n. Then

e =
(
a−1

)k
=

(
an−1

)k
= akn−k =⇒ ak = ake = akakn−k = akn

Now according to Theorem 7.8, if a has order n, then ai = aj ⇐⇒ i ≡ j (mod n) . So

ak = akn =⇒ k = kn (mod n) =⇒ k = 0 (mod n) =⇒ k = pn for some positive integer p

But the only positive multiple of n that’s less than or equal to n is n itself. Therefore, k = n, and
∣∣a−1

∣∣ = |a|.

Example 25.5. Let G be a group and let a ∈ G. Prove that the set

Na ≡ {g ∈ G | ga = ag}

is a subgroup of G.

We need to show three things: (i) that Na is closed under multiplication, (ii) that the identity element of
G is in Na and (iii) that if g ∈ Na, then g−1 ∈ Na.

(i) Na is closed under multiplication: Suppose g, g′ ∈ Na. Then

(gg′) a = g (g′a) = g (ag′) = (ga) g′ = (ag) g′ = a (gg′)

and so gg′ ∈ Na.

(ii) Clearly, ea = a = ae and so e ∈ Na.

(iii) Suppose g ∈ Na. Then
ga = ag

Multiplying this equation from the left by g−1 yields

a = g−1ga = g−1ag

Multiplying the extreme sides of the above equation from the right by g−1 yields

ag−1 = g−1agg−1 = g−1ae = g−1a =⇒ ag−1 = g−1a =⇒ g−1 ∈ Na

And so if g ∈ Na, g−1 ∈ Na.

Example 25.6. Prove that H is a subgroup of a group G if and only if ab−1 ∈ H for all a, b ∈ H.

⇐=

Suppose ab−1 ∈ H for all a, b in H. We need to show the criteria (i), (ii), (iii) of the previous hold.

Choosing b = a ∈ H, we have aa−1 ∈ H. But aa−1 = e and so e ∈ H. This proves (ii).

Now choosing a = e (which we now know belongs to H) we have eb−1 = b−1 ∈ H for all b ∈ H. And so we
have property (iii).

It remains to prove that ab ∈ H whenever a, b ∈ H. But by (iii) just proven, if b ∈ H, then b−1 ∈ H and so

a
(
b−1

)−1 ∈ H =⇒ ab ∈ H
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=⇒

Assume H is a subgroup of G. Then if a, b are in H, so are a−1 and b−1 since subgroups are closed under
multiplicative inverses. But then

ab−1 ∈ H since subgroups are closed under multiplication.


