LECTURE 24

Group Homomorphisms

DEFINITION 24.1. A map $f: G \to H$ be a map between two groups is called a group homomorphism if

$$f\left(g\ast g'\right) = f\left(g\right)\ast f\left(g'\right) \quad , \quad \forall \ g,g' \in G$$

A group homorphism $f : G \to H$ is said to be an **group isomorphism** if the map f is bijective. Two groups G and H are said to be **isomorphic** (written $G \cong H$) if there exists an isomorphism $f : G \to H$.

THEOREM 24.2. Every infinite cylic group is isomorphic to \mathbb{Z} . Every finite cyclic group of order n is isomorphic to \mathbb{Z}_n .

THEOREM 24.3. Let G and H be groups with identity elements e_G and e_H , respectively. If $f: G \to H$ is a homomorphism, then $\iota(i) f(e_G) = e_H \cdot \iota(ii) f(a^{-1}) = (f(a))^{-1}$ for every $a \in G \cdot \iota(iii) \operatorname{Im}[f]$ is a subgroup of H. $\iota(iv)$ If f is injective, then $G \cong \operatorname{Im}[f]$.

THEOREM 24.4 (Cayley's Theorem). Every group G is isomorphic to a subgroup of a permutation group.

COROLLARY 24.5. Every finite group G of order n is isomorphic to a subgroup of the symmetric group S_n .