LECTURE 20

Polynomial Functions, Roots, and Reducibility

We will now look for conditions under which a given polynomial f € R[z]|, R being a commutative ring,
factorizes.

DEFINITION 20.1. Let R be a commutative ring. To any f € R[x], we can associate a map f R — R as
follows: if f = apx™ + ap_ 12" 1+~ a1x + a, € Rlz] and r € R, then we can define f(r) € R by

f(r) =t a1 e ar +a,

The function f(x) is called the polynomial function associated to the polynomial f.

Remark: One rarely uses separate notation to distinguish between f € R[x] and f € {functions from Rto R}.

Example: Consider the polynomials

f = [1]3.’1!4 + [1]3.’1! + [1]3
g = [1]3.’,173 + [1]31}2 + [1]3

These two polynomials are distinct when regarded as elements of Zgz[x]. However,

F([0lz) = [1]s =g ([0]s)
S(s) = (03 =g([1]s)
S(12ls) = [Us=3([2s)

so, as functions from Z3 to Zs, f(z) and g(x) are identical.

More generally, if R is a ring with only n elements there will be only n™ distinct functions from R to R;
even though there will be an infinite number of distinct polynomials on R.

DEFINITION 20.2. Let R be a commutative ring and let f € R[z]. An element a € R is said to be a root of
the polynomial f if f(a) = Og.

Example.

The polynomial 22 + 1 has no roots when regarded as an element of R[x] because there is no real number
7 such that 72 = —1. However, when we regard 22 + 1 as an element of C[z] it has two roots =i.

THEOREM 20.3 (The Remainder Theorem). Let F be a field, f € Flz], and o € F. The remainder of f
when divided by the polynomial x — a is f(a) (regarded as a zero degree element of F[z]).

Proof.

By the Division Algorithm, there exists unique polynomials ¢ and r in F[z] such that
f=qlx—a)+r
with
r=0r or deg(r) <deg(x—a)=1
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so either » = 0 or r is a non-zero constant. Thus, in either case, r € F'. If we now “evaluate” both sides of
(20) at a € F', we get

THEOREM 20.4 (The Factor Theorem). Let F be a field, f € Flz], and o € F. Then a is a root of the
polynomial f if and only if (x — a) is a factor of f in Flx].

Proof.

In view of Theorem 4.11, we have

f=(x—a)q+ f(a)
Thus, if f(a) =0, then £ — a is a factor of f. Using the uniqueness property of the division algorithm, we
can also conclude that if z — a divides f then f(a) =0. 11

COROLLARY 20.5. Let F be a field and f a nonzero polynomial of degree n in Flx]. Then f has at mostn
roots in Flz].

Proof.

The proof is by induction on degree. If n = 0, then f is a nonzero constant polynomial and therefore has
no roots. Thus. the statement is true for n = 0.

Now suppose that the statement of the theorem is true for all polynomials of degree less than n and that
deg(f) = n. I f has no roots in F, then the statement is true. If f has a root a € F', then we know by
Theorem 4.12 that f factors as

f=@—a)g
for some polynomial g € F[z]. Suppose ¢ € F' is any root of f other than a. Then (¢ — a) # 0, and so

f(e) =0 implies that g(c) = 0 because F' is an integral domain. Thus, the only roots of f in F" are ¢ and
the roots ¢ of g. But deg(g) is n — 1. By the induction hypothesis, g, therefore, has at most n — 1 roots.
Therefore, f has at most n roots. 1

COROLLARY 20.6. Let F be a field and f € Flz], with deg(f) > 2. (i) If f is irreducible in F[x], then f
has no roots in F. (ii) If f has degree 2 or 3 and has no roots in F, then f is irreducible in Fz].

Proof. (1) I f is irreducible, then it has no factor of the form z +a, a € F. But then Theorem 4.12 implies
that f has no roots a € F'.

(ii) Suppose f has degree 2 or 3 and has no roots in F. Then f has no first degree factor in F[z], since
every first degree polynomial cx + d in F[z] has a root in F', namely —c™'d. Therefore, if

f=rs

then neither r nor s can have degree 1. Since f has degree 2 or 3, either r or s must have degree 0. Thus,
7 or 8 is a constant. And so f is irreducible by Theorem 4.8. i

CoROLLARY 20.7. Let F be an infinite field and f,g € Flx]. Then f and g induce the same function from
F to Fif and only if f = ¢ in Flz].

Proof.
-
This 1s obvious.

=
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Suppose that f and g induce the same function from F to F. Then f(a) = j(a) for all a € F. So
fla)—gla)=0p , YacF
This means that every a € F'is a root of the polynomial f —g. Since F' is infinite there must be an infinite

number of roots of f — ¢g. But this would contradict Corollary 4.13 - unless f — ¢ is the zero polynomial
Op € F[z]. Therefore f — g = Op, which is to to say; f =g. Il

Example:

1. Prove that f = 23 4+ x 4 1 is irreducible when regarded as an element of Zs|x].

We have B
f(0s) = [0]5+[0]s +[1]s = [1]s
ft)s) = [s+[ls+[1]s=[3s
f2s) = [Bls+[2s+[1s=[ls
fBs) = R7s+Bls+[s=[ls
f(M]s) = B2s+[s+[]s=[2s

so f(a) # [0]5 for all @ € F. By Corollary 4.14(i), f must be irreducible.



