
LECTURE 20

Polynomial Functions, Roots, and Reducibility

We will now look for conditions under which a given polynomial f ∈ R[x], R being a commutative ring,
factorizes.

Definition 20.1. Let R be a commutative ring. To any f ∈ R[x], we can associate a map f̃ : R → R as

follows: if f = anx
n + an−1x

n−1 + · · · a1x+ ao ∈ R[x] and r ∈ R, then we can define f̃(r) ∈ R by

f̃(r) = anr
n + an−1r

n−1
+ · · ·+ a1r + ao .

The function f̃(x) is called the polynomial function associated to the polynomial f .

Remark: One rarely uses separate notation to distinguish between f ∈ R[x] and f̃ ∈ {functions from R to R}.

Example: Consider the polynomials

f = [1]3x
4 + [1]3x+ [1]3

g = [1]3x3 + [1]3x2 + [1]3

These two polynomials are distinct when regarded as elements of Z3[x]. However,

f̃ ([0]3) = [1]3 = g̃ ([0]3)

f̃ ([1]3) = [0]3 = g̃ ([1]3)

f̃ ([2]3) = [1]3 = g̃ ([2]3)

so, as functions from Z3 to Z3, f̃(x) and g̃(x) are identical.

More generally, if R is a ring with only n elements there will be only nn distinct functions from R to R;
even though there will be an infinite number of distinct polynomials on R.

Definition 20.2. Let R be a commutative ring and let f ∈ R[x]. An element a ∈ R is said to be a root of

the polynomial f if f̃(a) = 0R.

Example.

The polynomial x2 + 1 has no roots when regarded as an element of R[x] because there is no real number
r such that r

2 = −1. However, when we regard x
2 + 1 as an element of C[x] it has two roots ±i.

Theorem 20.3 (The Remainder Theorem). Let F be a field, f ∈ F [x], and a ∈ F . The remainder of f
when divided by the polynomial x− a is f̃(a) (regarded as a zero degree element of F [x]).

Proof.

By the Division Algorithm, there exists unique polynomials q and r in F [x] such that

f = q(x− a) + r

with

r = 0F or deg(r) < deg(x− a) = 1 .
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so either r = 0 or r is a non-zero constant. Thus, in either case, r ∈ F . If we now “evaluate” both sides of
(20) at a ∈ F , we get

f̃(a) = q̃(a)(a− a) + r = r .

Theorem 20.4 (The Factor Theorem). Let F be a field, f ∈ F [x], and a ∈ F . Then a is a root of the
polynomial f if and only if (x− a) is a factor of f in F [x].

Proof.

In view of Theorem 4.11, we have
f = (x− a)q + f(a) .

Thus, if f(a) = 0, then x− a is a factor of f . Using the uniqueness property of the division algorithm, we
can also conclude that if x− a divides f then f(a) = 0.

Corollary 20.5. Let F be a field and f a nonzero polynomial of degree n in F [x]. Then f has at most n
roots in F [x].

Proof.

The proof is by induction on degree. If n = 0, then f is a nonzero constant polynomial and therefore has
no roots. Thus. the statement is true for n = 0.

Now suppose that the statement of the theorem is true for all polynomials of degree less than n and that
deg(f) = n. If f has no roots in F , then the statement is true. If f has a root a ∈ F , then we know by
Theorem 4.12 that f factors as

f = (x− a)g

for some polynomial g ∈ F [x]. Suppose c ∈ F is any root of f other than a. Then (c − a) �= 0, and so
f̃(c) = 0 implies that g̃(c) = 0 because F is an integral domain. Thus, the only roots of f in F are a and
the roots c of g. But deg(g) is n − 1. By the induction hypothesis, g, therefore, has at most n − 1 roots.
Therefore, f has at most n roots.

Corollary 20.6. Let F be a field and f ∈ F [x], with deg(f) ≥ 2. (i) If f is irreducible in F [x], then f

has no roots in F . (ii) If f has degree 2 or 3 and has no roots in F , then f is irreducible in F [x].

Proof. (i) If f is irreducible, then it has no factor of the form x+ a, a ∈ F . But then Theorem 4.12 implies
that f has no roots a ∈ F .

(ii) Suppose f has degree 2 or 3 and has no roots in F . Then f has no first degree factor in F [x], since
every first degree polynomial cx + d in F [x] has a root in F , namely −c−1d. Therefore, if

f = rs

then neither r nor s can have degree 1. Since f has degree 2 or 3, either r or s must have degree 0. Thus,

r or s is a constant. And so f is irreducible by Theorem 4.8.

Corollary 20.7. Let F be an infinite field and f, g ∈ F [x]. Then f and g induce the same function from

F to F if and only if f = g in F [x].

Proof.

⇐

This is obvious.

⇒
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Suppose that f and g induce the same function from F to F . Then f̃(a) = g̃(a) for all a ∈ F . So

f̃(a)− g̃(a) = 0F , ∀ a ∈ F .

This means that every a ∈ F is a root of the polynomial f − g. Since F is infinite there must be an infinite
number of roots of f − g. But this would contradict Corollary 4.13 - unless f − g is the zero polynomial
0F ∈ F [x]. Therefore f − g = 0F , which is to to say; f = g.

Example:

1. Prove that f = x3 + x + 1 is irreducible when regarded as an element of Z5[x].

We have
f̃ ([0]5) = [0]

5
+ [0]5 + [1]5 = [1]5

f̃ ([1]5) = [1]5 + [1]5 + [1]5 = [3]5
f̃ ([2]5) = [8]5 + [2]5 + [1]5 = [1]5
f̃ ([3]5) = [27]5 + [3]5 + [1]5 = [1]5
f̃ ([4]5) = [32]5 + [4]5 + [1]5 = [2]5

so f̃(a) �= [0]5 for all a ∈ F . By Corollary 4.14(i), f must be irreducible.


