
LECTURE 19

Irreducibles and Unique Factorization

Theorem 19.1. Let F be a field. Then f is a unit in F [x] if and only if f is a non-zero constant polynomial.

Proof. Suppose f is a unit in F [x]. Then f 6= 0F and there exists g 6= 0F in F [x] such that

fg = 1F .

Calculating the degrees both sides of this equation yields

deg (f) + deg (g) = 0 .

Since the degree of any element of F [x] is always a non-negative integer, we conclude that deg (f) = deg (g) =
0. So f must be a non-zero constant polynomial.

Conversely, if c ∈ F and c 6= 0F , then c−1 ∈ F ⊂ F [x] exists since F is a field. So c is a unit in F [x]. �

Definition 19.2. Let F be a field. A polynomial f ∈ F [x] is said to an associate of another polynomial
g ∈ F [x] if

f = cg .

for some nonzero c ∈ F .

Remark: Suppose p is an arbitrary polynomial of degree n, say

p = anx
n + an−1x

n−1 + · · · a1x + a0

with an 6= 0F . Then there is precisely one associate g of p that is monic; namely

g = a−1
n p .

Definition 19.3. Let F be a field. A nonconstant polynomial p ∈ F [x] is said to be irreducible if its
only divisors are its associates and the nonzero constants polynomials (the units of F [x]). A nonconstant
polynomial that is not irreducible is said to be reducible.

The following theorem shows that the irreducible polynomials in F [x] have essentially the same divisibility
properties as the prime numbers in Z.

Theorem 19.4. Let F be a field and p a nonconstant polynomial in F [x]. Then the following conditions
are equivalent:

(1) p is irreducible.
(2) If b and c are any polynomials such that p | bc, then p | b or p | c.
(3) If r and s are any polynomials such that p = rs, then r or s is a nonzero constant polynomial.

Proof.

(1) ⇒ (2)

Suppose
p = anx

n + an−1x
n−1 + · · ·+ a1x + a0 , an 6= 0 ,
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is irreducible and suppose p | bc. Consider

d = GCD (p, b) .

By definition d is the monic polynomial of highest degree that divides p and b. Since p is irreducible its
only divisors of the form q = c ∈ F , c 6= 0F , and r = cp, c ∈ F . The only monic divisors of p are thus 1F
and a−1

n p. Thus,

d ∈
{

1F , a
−1
n p

}
.

If d = 1F , then p and b are relatively prime and Theorem 4.6 then implies p | c. If d = a−1
n p, then a−1

n p
divides b and hence so does p. Thus, if p is irreducible and p | bc, then p | b or p | c.

(2) ⇒ (3)

Now assume that p has the property that if p | bc then p | b or p | c.

If p = rs, then certainly p | rs. But then by hypothesis, p | r or p | s. However,

(1) deg (p) = deg (r) + deg (s)

and we must also have

(2) deg (p) ≤ deg (r) or deg (p) ≤ deg (s) .

But (1) and (2) can not be both be satisfied unless either deg (r) = 0 or deg (s) = 0. Hence either r or s
must be a nonzero constant polynomial.

(3) ⇒ (1)

Now assume property (3) is true. Let q be any divisor of p. Then

p = qw

for some nonzero w ∈ F [x]. Property (3) implies either q or w is a nonzero element of F . Thus, either q = c
or p = cq. Thus, any divisor of p is either a nonzero constant polynomial or an associate of p. Hence, p is
irreducible. �

Corollary 19.5. Let F be a field and p an irreducible polynomial in F [x]. If p | s1s2 · · · sk, then p must
divide at least one of the polynomials si.

Proof. This is proved by applying Property (2) of Theorem 4.8 repeatedly. If p divides s1s2 · · · sk =
s1 (s2 · · · sk) then either p divides s1 or p divides s2 · · · sk. If the first case holds we are done, if not
then p | s2 (s3 · · · sk), so Property (2) implies either p | s2 or p | s3 · · · sk. If p | s2 we are done; if not
p | s3 (s4 · · · sk). Continuing in this manner, one ends up the statement that either p divides one of the si,
i < k , or p | sk. Hence the conclusion of the Corollary follows. �

Theorem 19.6. Let F be a field. Every nonconstant polynomial is a product of irreducible polynomials in
F [x]. This factorization is unique in the following sense. If

f = p1 · · · pr and f = q1 · · · qs ,

with each pi and each qj irreducible, then r = s and one can rearrange and relabel the factors qi so that qi
is an associate of pi, i = 1, 2, . . . , k.

Proof.

Existence:

Let S be the set of all polynomials of degree ≥ 1 which are not the product of irreducibles. We want to
show that S is empty. We will use a proof by contradiction.
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Suppose S is non-empty and set

R = {n ∈ N | n = deg (f) for somef ∈ S} .

Since S is non-empty, R is an non-empty subset of N and so by the Well-Ordering Axiom, R has a least
member r. Let p be a corresponding element of S.

Since p ∈ S, p is not a product of irreducibles; and so it is not itself an irreducible polynomial. Therefore,
p must be divisible by some other nonconstant polynomials,

p = qr

at least one of which, say q, is not the product of irreducibles. But then

deg (p) = deg (q) + deg (r) ≤ deg (q) + 1 .

Since q is not the product of irreducibles, it belongs to S and has degree strictly less than p. But p was
choosen to be an element of least degree in S. Hence, we have a contradiction, unless S is empty.

Uniqueness:

Now suppose

(5)
f(x) = p1(x)p2(x) · · · pm(x)

= q1(x)q2(x) · · · qn(x)

with p1(x), . . . , pm(x) and q1(x), . . . , qn(x) all irreducible. We then have

(6) q1(x)q2(x) · · · qn(x) = p1(x) (p2(x) · · · pm(x)) .

Thus,

(7) p1(x) | q1(x) · · · qn(x) .

By Corollary 4.9, p1(x) must divide at least one of the qi(x). By reordering the qi(x) we can assume without
loss of generality that p1(x) | q1(x). But since q1(x) is by hypothesis irreducible its only non-constant divisors
are its associates. Thus,

(8) q1(x) = c1p1(x) , for some c1 ∈ F .

Substituting (8) into the left hand side of (6) and then dividing both sides by p1(x) yields

(9) c1q2(x) · · · qn(x) = p2(x) (p3(x) · · · pm(x)) .

Applying Corollary 4.9 again, we conclude that p2(x) must divide one of the factors q2(x), . . . , qn(x) of the
left hand side of (9). By reordering the qi(x), we can assume without loss of generality that p2(x) | q2(x).
Since q2(x) is irreducible, we must have

(10) q2(x) = c2p2(x) , for some c2 ∈ F .

Substituting (10) into the left hand side of (9) we get

c1c2q3(x)q4(x) · · · qn(x) = p3(x)p4(x) · · · pm(x) .

We can continue in this manner to peal off irreducible factors from both sides of (10).

If m > n, then eventually we would reach

(11) c1c2 · · · cm = pm+1(x)pm+2(x) · · · pn(x) .

But the left hand side of (11) is just a constant, while the right hand side is a product of non-constant
polynomials. This can not happen (there is no way that the degrees of two sides can match). Therefore,
we cannot have m > n.

If m < n, then eventually we would reach

(19.1) c1c2 · · · cnqn+1(x)qn+2(x) · · · qm(x) = 1F .

This can not occur either, because we cannot have a nonconstant polynomial dividing 1. Thus, we cannot
have m < n either.
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Thus, m = n, and the peeling off procedure leads to

q1(x) = c1p1(x)

q2(x) = c2p2(x)

...

qm(x) = cmpm(x)

with
c1c2 · · · cm = 1F

for a suitable reordering of the factors q1(x), . . . , qm(x). Thus, after a suitable reordering each factor qi(x)
is an associate of the corresponding factor pi(x). �


