LECTURE 16

Homomorphisms and Isomorphisms of Rings

Having now seen a number of diverse examples of rings, it is appropriate at this point to see how two different sets might be endowed with essentially the same ring structure.

Consider a set R consisting of two elements a, b with the following addition and multiplication tables

+	a	b	\times	a	b
a	a	b	a	a	a
b	b	a	b	a	b

It is easy to verify that R has a structure of a commutative ring with identity if $0_R = a$ and $1_R = b$.

On the other hand, $\mathbb{Z}_2 = \{[0], [1]\}$ is another commutative ring with identity consisting of only two elements. If we write down the addition and multiplication tables for \mathbb{Z}_2

+	[0]	[1]	×	[0]	[1]
[0]	[0]	[1]	[0]	[0]	[0]
[1]	[1]	[0]	[1]	[0]	[1]

we see that \mathbb{Z}_2 has about the same structure as that of R once we recognize the correspondences $a \leftrightarrow [0]$, $b \leftrightarrow [1]$. In such a case, when two sets R and S have a virtually identical ring structure, we shall say that R and S are *isomorphic*. Below we formalize this concept a little more precisely.

Recall that a map f from a set R to a set S is *injective* if

$$f(r) = f(r') \quad \Rightarrow \quad r = r'$$

 $f: R \to S$ is surjective if every element in S can be expressed as s = f(r) for some r in R. Finally, $f: R \to S$ is bijective if f is both injective and surjective. Finally, we recall that if f is bijective, then f has a inverse; i.e., there exists a (unique) function $f^{-1}: S \to R$ such that

$$f(f^{-1}(x)) = x = f^{-1}(f(x)) \quad \forall x \in R$$
.

DEFINITION 16.1. A map $f: R \to S$ between two rings is a called a homomorphism if:

1

(i)
$$f(r+r') = f(r) + f(r')$$
, $\forall r, r' \in R$
(ii) $f(rr') = f(r)f(r')$, $\forall r, r' \in R$.

f is said to be an **isomorphism** if it is also bijective.

Example 1. Consider the map $\sigma : \mathbb{C} \to \mathbb{C}$ where $\sigma(x + iy) = x - iy$ (i.e., σ is complex conjugation in \mathbb{C}). Then if $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$,

(16.1)
$$\sigma(z_1 + z_2) = \sigma(x_1 + x_2 + i(y_1 + y_2)) \\= x_1 + x_2 - i(y_1 + y_2) \\= x_1 - iy_1 + x_2 - iy_2 \\= \sigma(z_1) + \sigma(z_2)$$

16. HOMOMORPHISMS AND ISOMORPHISMS OF RINGS

(16.2)
$$\sigma(z_1 z_2) = \sigma(x_1 x_2 - y_1 y_2 + i(x_1 y_2 + y_1 x_2))$$
$$= x_1 x_2 - y_1 y_2 - i(x_1 y_2 + y_1 x_2)$$
$$= (x_1 - iy_1)(x_2 - iy_2)$$
$$= \sigma(z_1)\sigma(z_2)$$

Thus, σ is a homomorphism of rings. Since

 $\sigma^2 = \sigma \circ \sigma = Identity map$

it is clear that σ^{-1} exists, and so σ is a bijection. Thus, σ is a ring isomorphism.

THEOREM 16.2. Let $f: R \to S$ be a homomorphism of rings. Then

(i)
$$f(0_R) = 0_S$$
.
(ii) $f(-r) = -f(r)$ for every $r \in R$.

Moreover, if R and S have identities and f is an surjective homomorphism, then

- (iii) $f(1_R) = 1_S$.
- (iv) Whenever $a \in R$ is a unit of R, then f(a) is a unit of S and $f(a)^{=1} = f(a^{-1})$.

Proof.

(i) Since f is a homomorphism and $0_R + 0_R = 0_R$ in R,

$$f(0_R) + f(0_R) = f(0_R + 0_R) = f(0_R)$$

Adding $-f(0_R) \in S$ to both sides of this equation yields

$$f(0_R) = 0_S$$

(ii)

$$f(r) + f(-r) = f(r + (-r))$$

= $f(0_R)$
= 0_S by (i)

Hence f(-r) is the additive inverse of f(r) in S; i.e., -f(r) = f(-r).

(iii) Since f is surjective, $1_S = f(r)$ for some $r \in R$. Therefore,

$$f(1_R) = f(1_R) \cdot 1_S = f(1_R) \cdot f(r) = f(1_R r) = f(r) \equiv 1_S$$

(iv) Suppose a is a unit in R with multiplicative inverse a^{-1} . Then by (iii)

$$1_{S} = f(1_{R}) = f(a^{-1}a) = f(a^{-1}) f(a)$$

and so f(a) is a unit in S with multiplicative inverse $f(a^{-1})$.

COROLLARY 16.3. Let $f : R \to S$ be a ring homomorphism. Then the image of f in Simage $(f) = \{s \in S \mid s = f(r) \text{ for some } r \in R\}$

is a subring of S.

Proof. From the fact that f is a ring homomorphism it follows that image(f) is closed under addition and multiplication:

$$\begin{array}{rcl} s,s' & \in & image\left(f\right) & \Rightarrow & \exists \; r,r' \in R \quad s.t. \quad s=f\left(r\right) \;,\; s'=f\left(r'\right) \\ \Rightarrow & s+s'=f\left(r\right)+f\left(r'\right)=f\left(r+r'\right) \in image\left(f\right) \end{array}$$

16. HOMOMORPHISMS AND ISOMORPHISMS OF RINGS

$$\begin{array}{rcl} s,s' & \in & image\left(f\right) & \Rightarrow & \exists \ r,r' \in R \quad s.t. \quad s = f\left(r\right) \ , \ s' = f\left(r'\right) \\ \Rightarrow & s \times s' = f\left(r\right) \times f\left(r'\right) = f\left(r \times r'\right) \in image\left(f\right) \end{array}$$

From part (ii) of the preceding theorem we have

$$s = f(r)$$
 for some $r \in R \Rightarrow -s = f(-r) \in image(f)$

Since image(f) is closed under addition, multiplication, and taking additive inverses, we have by Theorem 14.5, that image(f) is a subring of S.