LECTURE 15

Basic Properties of Rings

THEOREM 15.1. For any element a in a ring R, the equation a + x = Or has a unique solution.

Proof.

We know that a + x = Og has at least one solution v € R by Axiom (5) in the definition of a ring. If v is
also a solution then, a +u = 0r and a + v = Og, so

u = u-+0g
= u+(a+v)
= (u+a)+v
= 0Op+vw

v

Therefore, a + x = Or has only one solution. O

We can now define negatives and subtraction in any ring R. Let a € R. By Theorem 3.2, a + x = Op has a
unique solution in R. We shall denote this unique solution by —a.

DEFINITION 15.2. If R is a ring and a € R, then —a is the unique solution of a +x = Og.

DEFINITION 15.3. Ifa,b € R, then
a—b=a+ (-b)

The following example shows how these familiar concepts can take an unusual form.

Example: In Zg,

-0 = 0
-1 =5
-2 = 4
-3 = 3
-4 = 2
-5 1

Note that not only is 0 = —0, but 3 = —3.

While we’re at it, let us also define for any ring R and any a € R and any positive integer n € Z

a” =aaa---a (n factors)

nae =a+a+a+---+a (n summands).

THEOREM 15.4. Ifa+b=a+c in a ring R, then b= c.
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Proof. Adding —a to both sides of a + b = a + ¢ produces

—a+(a+bd) = —a+(a+c)
(—a+a)+b = (—a+a)+c
Opr+b = 0Or+c
b = ¢

THEOREM 15.5. For any elements a,b of a ring R:

(a) a- Or=0gr-a
(b) a(—b) = —(ab) = (—a)b
(c) =(—a)=a
(d) —(a+b)=—a+(-D)
(e) —(a—b)=—-a+b
(f) (—a)(=b) =ab
(g) If R has an identity 1, then (—1g)a = —a
Proof.
(a) We have
0R+OR = OR
= a-(0r+0g) = a-0r
= (a + OR) + OR
= (a-0g)+(a-0r) = (a+0g)+0g

Theorem 3.3 then implies a - 0g = 0g. The proof that O - a = Og is similar.

(b) By definition —(abd) is the unique solution of ab+ x = O, so any other solution of this equation must
be equal to —(ab). But = a(—b) is also a solution, since by the distributive law and (a)

ab+a(fb) :a(bJr(*b)) =a-0p =0g
Therefore —(ab) = a(—b). The other parts are proven similiarly.

(¢) By definition, —(—a) is the unique solution of (—a)+z = Or. But 2 = a is also a solution, so a = —(—a).

(d) By definition, —(a + b) is the unique solution of (a + b) + = Or. But (—a) + (—b) is also a solution,
since

(@+b) +((=a) + (=b)) = (a + (=a)) + (b + (=b)) = Or + Or = Or
So, by uniqueness, a +b = (—a) + (=b).
(e) By the definition of subtraction and (c) and (d),
(a4 b) = (a— (~5) = (~a) + (~(~D) = ~a+b

(f) By (c) and the repeated use of (b)
(=a)(=b) = = (a(=b)) = — (—(ab)) = ab

(&) By (b)
(~1p)a =~ (1pa) = —(a) = —a
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O

THEOREM 15.6. Let R be a ring and let a,b € R. Then the equation a + x = b has the unique solution
z=>b—a.

Proof. x = b — a is a solution because
at+(b-—a)=a+ b+ (-a))=a+(—a)+b=0g+b=10
It is unique since, if w is any other solution then
at+w=b=a+ (b—a)

hence w = b — a by Theorem 3.3. Hence x = b — a is the only solution.

Remark: Remember that, in general, a multiplicative equation
ar =1>

need not have a solution in R. For example,
3r =2

has no solution in Z. Yet there is one special case when solutions of equations of the form ax = b always
exist. This is when R is a division ring. For in this case, by definition, for any a # O in R we have a
solution of az’ = 1x. Multiplying this equation (from the right by b yields

(az’)b = 1gb
or

a(x'b) = b
Hence, if R is a division ring, a solution of ax = b always exists (namely, z = az’, where 2’ is the solution
of axr’ = 1g).

DEFINITION 15.7. A element a in a ring R with identity 1 is called o unit if there exists an element b € R
such that ab = 1g = ba. In this case, the element b is called the multiplicative inverse of a and is denoted
by a=!

Note that in a division ring every non-zero element a is a unit (since if R is a division ring, the equation
ax = 1p = xa always has a solution if a # Og). Indeed, in a division ring R we are by definition guaranteed
solutions of ax = 1z and ya = 1g. So suppose au = 1z and va = 1g. Then

u=lgpu= (va)u =v(au) =vlg =v

Example: The only units in Z are 1 and -1.

Example: Recall that Ms(R) is the non-commutative ring with identity defined

MQ(R):{(‘C‘ Z>|a,b7c,deR}
(v o) -
) _

a v
(c’ d’

(

-
on = (¢
(

with

~

c+cd d+d

aa +bc  ab +bd
ca' +dc ab + fd

Q

a+a b4V >

S/ N O R
o a o
Q T —
N— +

1p =



15. BASIC PROPERTIES OF RINGS 56

) such that ad — be # 0 is a unit in M3 (R); for
( a b >_1 = ( ad_(ipbc ad_(;bbc )
c d adflbc ad—bc
a b a b\' (1 0\ [a b\ '[a b
¢ d ¢ d “\0 1) \e d c d

DEFINITION 15.8. A nonzero element a in a commutative ring R is called a zero divisor if there exists a
nonzero element b € R such that ab = Og.

a b
Every element ( ¢ d

satisfies

THEOREM 15.9. Let R be a ring with identity and a,b € R. If a is a unit, then each of the equations

ar = b
ya = b

has a unique solution in R.

Proof. Since a is a unit, it has an inverse a=! € R. But then x = ¢~ !'b and y = ba~! are solutions of the
equations above since

a(a™'b) = (aa b =1gb=1b
(ba™Ya =bla"'a) =blr =D
If ¢ is another solution of ax = b, then ac = b and

laye = a7 ac) = a™'b

c=1gc= (a~
Similarly, if d is another solution of ya = b, then dc = b and

d=dlg =d(aa™") = (da)a™* = ba™!
Therefore, x = a~'b and y = ba~! are the only solutions. O

THEOREM 15.10. Let R be a commutative ring with identity. Then R is an integral domain if and only if
R has this cancellation property:

ab=ac = b=c whenever a # Og

Proof.

= Assume R is an integral domain. If ab = ac then ab — ac = Og, so a(b — ¢) = Og. Since R is an integral
domain, if @ # O, then we must necessarily have b — ¢ = 0g, or b = c.

< Assume that the cancellation property holds in R and that R is not an integral domain. Then there
exists a,b € R such that ab = 0g and a,b # 0r. But then

a - OR = OR =ab
and so the cancellation property implies b = Og; but this is a contraction. ([l

COROLLARY 15.11. FEwvery field R is a an integral domain.

Proof. We first note that by definition(s) every non-zero element a of a field R is a unit. Also, every field
is a commutative ring with identity. Now suppose ab = ac and a # 0g. Multiplying both sides of ab = ac
by a1 yields b = c. Therefore, R is an integral domain by Theorem 3.7. ]

THEOREM 15.12. FEwvery finite integral domain R is a field.
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Proof. Since R is a commutative ring with identity, we need only show that for each a # Og, the equation
ax = 1g has a solution. Let ay,as,...,a, be the distinct elements of R, and suppose a; # 0g. To show that
a;x = 1g has a solution, consider the products a;a1,a:as,...,aia,. If a; # a; we must have asa; # a.a;
since otherwise the cancellation property coming from Theorem 3.7 would imply a; = a;, i.e., we would
have a contradiction. Therefore, the a;aq, asas,...,ara, are all distinct elements of R. However, R has
exactly n elements, one of which is 1. Therefore, there must be some a; such that a;a; = 1g. Therefore,
every equation ax = 1g, with a # Or has a solution in R. Hence, R is a field. (]

COROLLARY 15.13. Every Z, with p prime is a (finite) field.



