
LECTURE 15

Basic Properties of Rings

Theorem 15.1. For any element a in a ring R, the equation a + x = 0R has a unique solution.

Proof.

We know that a + x = 0R has at least one solution u ∈ R by Axiom (5) in the definition of a ring. If v is
also a solution then, a + u = 0R and a + v = 0R, so

u = u + 0R

= u + (a + v)

= (u + a) + v

= 0R + v

= v .

Therefore, a + x = 0R has only one solution. �

We can now define negatives and subtraction in any ring R. Let a ∈ R. By Theorem 3.2, a + x = 0R has a
unique solution in R. We shall denote this unique solution by −a.

Definition 15.2. If R is a ring and a ∈ R, then −a is the unique solution of a + x = 0R.

Definition 15.3. If a, b ∈ R, then

a− b ≡ a + (−b) .

The following example shows how these familiar concepts can take an unusual form.

Example: In Z6,

−0 = 0

−1 = 5

−2 = 4

−3 = 3

−4 = 2

−5 = 1 .

Note that not only is 0 = −0, but 3 = −3.

While we’re at it, let us also define for any ring R and any a ∈ R and any positive integer n ∈ Z

an ≡ aaa · · · a (n factors)

na ≡ a + a + a + · · ·+ a (n summands).

Theorem 15.4. If a + b = a + c in a ring R, then b = c.
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Proof. Adding −a to both sides of a + b = a + c produces

−a + (a + b) = −a + (a + c)

(−a + a) + b = (−a + a) + c

0R + b = 0R + c

b = c .

�

Theorem 15.5. For any elements a, b of a ring R:

(a) a · 0R = 0R = 0R · a
(b) a(−b) = −(ab) = (−a)b
(c) −(−a) = a
(d) −(a + b) = −a + (−b)
(e) −(a− b) = −a + b
(f) (−a)(−b) = ab
(g) If R has an identity 1R, then (−1R)a = −a

Proof.

(a) We have

0R + 0R = 0R

⇒ a · (0R + 0R) = a · 0R
= (a + 0R) + 0R

⇒ (a · 0R) + (a · 0R) = (a + 0R) + 0R

Theorem 3.3 then implies a · 0R = 0R. The proof that 0R · a = 0R is similar.

(b) By definition −(ab) is the unique solution of ab + x = 0R, so any other solution of this equation must
be equal to −(ab). But x = a(−b) is also a solution, since by the distributive law and (a)

ab + a(−b) = a (b + (−b)) = a · 0R = 0R .

Therefore −(ab) = a(−b). The other parts are proven similiarly.

(c) By definition, −(−a) is the unique solution of (−a)+x = 0R. But x = a is also a solution, so a = −(−a).

(d) By definition, −(a + b) is the unique solution of (a + b) + x = 0R. But (−a) + (−b) is also a solution,
since

(a + b) + ((−a) + (−b)) = (a + (−a)) + (b + (−b)) = 0R + 0R = 0R .

So, by uniqueness, a + b = (−a) + (−b).

(e) By the definition of subtraction and (c) and (d),

−(a + b) = − (a− (−b)) = (−a) + (−(−b)) = −a + b .

(f) By (c) and the repeated use of (b)

(−a)(−b) = − (a(−b)) = − (−(ab)) = ab .

(g) By (b)

(−1R)a = − (1Ra) = −(a) = −a .
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�

Theorem 15.6. Let R be a ring and let a, b ∈ R. Then the equation a + x = b has the unique solution
x = b− a.

Proof. x = b− a is a solution because

a + (b− a) = a + (b + (−a)) = a + (−a) + b = 0R + b = b .

It is unique since, if w is any other solution then

a + w = b = a + (b− a)

hence w = b− a by Theorem 3.3. Hence x = b− a is the only solution.

Remark: Remember that, in general, a multiplicative equation

ax = b

need not have a solution in R. For example,

3x = 2

has no solution in Z. Yet there is one special case when solutions of equations of the form ax = b always
exist. This is when R is a division ring. For in this case, by definition, for any a 6= 0R in R we have a
solution of ax′ = 1R. Multiplying this equation (from the right by b yields

(ax′)b = 1Rb

or

a(x′b) = b .

Hence, if R is a division ring, a solution of ax = b always exists (namely, x = ax′, where x′ is the solution
of ax′ = 1R).

Definition 15.7. A element a in a ring R with identity 1R is called a unit if there exists an element b ∈ R
such that ab = 1R = ba. In this case, the element b is called the multiplicative inverse of a and is denoted
by a−1.

Note that in a division ring every non-zero element a is a unit (since if R is a division ring, the equation
ax = 1R = xa always has a solution if a 6= 0R). Indeed, in a division ring R we are by definition guaranteed
solutions of ax = 1R and ya = 1R. So suppose au = 1R and va = 1R. Then

u = 1Ru = (va)u = v(au) = v1R = v .

Example: The only units in Z are 1 and -1.

Example: Recall that M2(R) is the non-commutative ring with identity defined

M2(R) =

{(
a b
c d

)
| a, b, c, d ∈ R

}
with (

a b
c d

)
+

(
a′ b′

c′ d′

)
=

(
a + a′ b + b′

c + c′ d + d′

)
(

a b
c d

)(
a′ b′

c′ d′

)
=

(
aa′ + bc′ ab′ + bd′

ca′ + dc′ ab′ + fd′

)
OR =

(
0 0
0 0

)
1R =

(
1 0
0 1

)
.
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Every element

(
a b
c d

)
such that ad− bc 6= 0 is a unit in M2(R); for

(
a b
c d

)−1
≡

(
d

ad−bc
−b

ad−bc
−c

ad−bc
a

ad−bc

)
satisfies (

a b
c d

)(
a b
c d

)−1
=

(
1 0
0 1

)
=

(
a b
c d

)−1 (
a b
c d

)
.

Definition 15.8. A nonzero element a in a commutative ring R is called a zero divisor if there exists a
nonzero element b ∈ R such that ab = 0R.

Theorem 15.9. Let R be a ring with identity and a, b ∈ R. If a is a unit, then each of the equations

ax = b

ya = b

has a unique solution in R.

Proof. Since a is a unit, it has an inverse a−1 ∈ R. But then x = a−1b and y = ba−1 are solutions of the
equations above since

a(a−1b) = (aa−1)b = 1Rb = b ,

(ba−1)a = b(a−1a) = b1R = b .

If c is another solution of ax = b, then ac = b and

c = 1Rc = (a−1a)c = a−1(ac) = a−1b .

Similarly, if d is another solution of ya = b, then dc = b and

d = d1R = d(aa−1) = (da)a−1 = ba−1 .

Therefore, x = a−1b and y = ba−1 are the only solutions. �

Theorem 15.10. Let R be a commutative ring with identity. Then R is an integral domain if and only if
R has this cancellation property:

ab = ac =⇒ b = c whenever a 6= 0R

Proof.

⇒ Assume R is an integral domain. If ab = ac then ab− ac = 0R, so a(b− c) = 0R. Since R is an integral
domain, if a 6= 0R, then we must necessarily have b− c = 0R, or b = c.

⇐ Assume that the cancellation property holds in R and that R is not an integral domain. Then there
exists a, b ∈ R such that ab = 0R and a, b 6= 0R. But then

a · 0R = 0R = ab

and so the cancellation property implies b = 0R; but this is a contraction. �

Corollary 15.11. Every field R is a an integral domain.

Proof. We first note that by definition(s) every non-zero element a of a field R is a unit. Also, every field
is a commutative ring with identity. Now suppose ab = ac and a 6= 0R. Multiplying both sides of ab = ac
by a−1 yields b = c. Therefore, R is an integral domain by Theorem 3.7. �

Theorem 15.12. Every finite integral domain R is a field.
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Proof. Since R is a commutative ring with identity, we need only show that for each a 6= 0R, the equation
ax = 1R has a solution. Let a1, a2, . . . , an be the distinct elements of R, and suppose at 6= 0R. To show that
atx = 1R has a solution, consider the products ata1, ata2, . . . , atan. If ai 6= aj we must have atai 6= ataj
since otherwise the cancellation property coming from Theorem 3.7 would imply ai = aj , i.e., we would
have a contradiction. Therefore, the ata1, ata2, . . . , atan are all distinct elements of R. However, R has
exactly n elements, one of which is 1R. Therefore, there must be some aj such that ataj = 1R. Therefore,
every equation ax = 1R, with a 6= 0R has a solution in R. Hence, R is a field. �

Corollary 15.13. Every Zp with p prime is a (finite) field.


