
LECTURE 13

The Structure of Zp when p is Prime

Theorem 13.1. If p > 1 is an integer, then the following properties are equivalent.

(1) p is prime.
(2) For any [a]p 6= [0]p in Zp, the equation [a]p X = [1]p has a solution in Zp.

(3) Whenever [a]p[b]p = [0]p in Zp, then [a]p = [0]p or [b]p = [0]p.

Proof.

(1) ⇒ (2) Suppose p is a positive prime and [a]p 6= [0]p in Zp. We want to show that the equation
[a]pX = [1]p has a solution in Zp. Now since [a]p 6= [0]p,

a− 0 6= kp

so a is not divisible by p. Since the only divisors of p are ±1 and ±p and because p - a, we must have

GCD(a, p) = 1 .

But then by Theorem 1.3, there exists integers u and v such that

ua + vp = 1 .

This equation, however, is equivalent to

ua− 1 = −vp
which implies that ua ≡ 1 (mod p), or [ua]p = [1]p. Setting X = [u]p we have

[a]p[x]p = [a]p[u]p = [au]p = [1]p ,

so X = [u]p is a solution.

(2) ⇒ (3) Suppose [a]p[b]p = [0]p in Zp. If [a]p = [0]p there is nothing to prove, If [a]p 6= [0]p then by (2)

there exists a solution [u]p ∈ Zp such that

[u]p[a]p = [1]p .

But then

[0]p = [u]p · [0]p = [u]p ([a]p[b]p) = ([u]p[a]p) [b]p = [1]p[b]p = [b]p .

Hence, in every case we have either [a]p = [0]p or [b]p = [0]p.

(3) ⇒ (1) Let a be any divisor of p; say p = ab. In order to show that p is prime we must show a = ±1,±p.
Now

p = ab ⇒ ab− 0 = p ⇒ [ab]p = [0]p ⇒ [a]p[b]p = [0]p .

in Zp. By (3) then either [a]p = [0]p or [b]p = [0]p. Now [a]p = [0]p implies a− 0 = kp which implies p | a,
or that a = sp. But then

p = ab = spb.

Dividing both sides by p shows that sb = 1. Since s and b are integers the only possibilities are that s = ±1
and b = ±1. Hence b = ±1 and so a = ±p. On the other hand, a similar argument shows that when
[b]p = 0, we must have a = ±1 and b = ±p. Hence if (3) holds, then the only factors of p are ±1 and ±p,
so p is prime. �
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We’ll now prove three easy corollaries to this theorem.

Corollary 13.2. Let p be a positive prime. For any [a]p 6= 0 and any [b]p ∈ Zp, the equation [a]p X = [b]p
has a unique solution in Zp.

Proof. We need to prove that two things, that [a]p X = [b]p has a solution in Zp and that that solution is
unique.

Existence: Since p is prime, by (2) of the preceding theorem, [a]p X = [1]p has a solution in Zp. Let [c]p be

that solution. Multiplying both sides of this equation by [b]p, we get

[b]p [a]p [c]p = [b]p [1]p =⇒ [a]p

(
[bc]p

)
= [b]p

Thus, [bc]p will be a solution of [a]p x = [b]p.

Uniqueness: Suppose both

[a]p [c1]p = [b]p

[a]p [c2]p = [b]p

Subtracting these two equations we have

[ap]
(

[c1]p − [c2]p

)
= [0]p

Since p is prime and [a]p 6= [0]p by hypothesis, statement (3) of the preceding theorems says

[c1]p − [c2]p = [0]p =⇒ [c1]p = [c2]p .

�

Corollary 13.3. Let a and n be integers with n > 1. Then GCD(a, n) = 1 if and only if the equation
[a]nX = [1]n in Zn has a solution.

Proof.

⇒

Suppose GCD(a, n) = 1. Then by Theorem 1.3, there exist integers u and v such that

1 = au + nv .

But then
au− 1 = nv

so au is congruent to 1 modulo n. Hence

[1]n = [au]n = [a]n[u]n .

Thus, [u]n is a solution of [a]nX = [1]n in Zn.

⇐

Suppose [a]n[x]n = [1]n has a solution [u]n in Zn. Then au is congruent to n modulo n. But this implies

au− 1 = nq

or
au− nq = 1 .

It follows from this equation that any common divisor of a and n must divide 1. Therefore, GCD(a, n) =
1. �

Definition 13.4. Whenever there is solution in Zn to the equation [a]n X = [1]n we say that [a]n is a unit
in Zn. Whenever there is a non-trivial solution (i.e, a solution other than the obvious one X = [0]n) of
[a]n X = [0]n we say that [a]n is a zero divisor in Zn.
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Lemma 13.5. Let n be a positive integer. If [a]n ∈ Zn, then [a]n is either a unit or a zero divisor.

Proof. From the fact that GCD (a, n) ≥ 1 always, we have two distinct cases:

• GCD (a, n) = 1. In this case, we know from Corollary 13.3 that [a]n is a unit in Zn. We will
show that [a]n cannot also be a zero divisor. Suppose we had an element [b]n 6= [0]n such that

[a]n [b]n = [0]n. Let [a]
−1
n be the solution of [a]n X = [1]n guaranteed by Corollary 13.3.Then we

would have

[1]n = [a]n [a]
−1
n

⇒ [b]n [1]n = [bn]n

(
[a]n [a]

−1
n

)
⇒ [b]n = ([b]n [a]n) [a]

−1
n = [0]n [a]

−1
n = [0]n

which contradicts our hypothesis that [b]n 6= [0]n. Therefore when GCD (a, n) = 1, [a]n is a unit
but not a zero divisor.

• Suppose GCD (a, n) = d > 1. In this case, the “if and only if” part of Corollary 13.3 tells us that
[a]n can not be a unit in Zn. To see that [a]n is a zero divisor, we note GCD (a, n) = d means d
divides both a and n, and moreover, 1 < d ≤ n. Now if d = n, then this means that n divides a
and so [a]n = [0]n, and hence [a]n will be a zero divisor (as any [k]n time [0]n produces [0]n).

So now we suppose 1 < d < n. Write

a = qd

n = sd with 1 < s, d < n

We then have

[a]n [s]n = [as]n = [(qd) s]n = [q (ds)]n = [qn]n = [0]n

Since 1 < s < n we have [s]n 6= [0]n and yet

[a]n [s]n = [0]n

Thus, when GCD(a, n) > 1 [a]n is a zero divisor but not a unit. �

Corollary 13.6. Let a, b, n be integers with n > 1 and GCD (a, n) = 1. Then the equation

[a]n x = [b]n

has a unique solution in Zn.

Proof. Suppose GCD (a, n) = 1, then as above we have integers u, v ∈ Z such that

au + nv = 1 =⇒ [au− nv]n = [1]n
=⇒ [au]n − [nv]n = [1]n
=⇒ [au]n − [0]n = [1]n
=⇒ [a]n [u]n = [1]n

Now multiply both sides by [b]n and we get

[a]n ([b]n [u]n) = [1]n [b]n = [b]n

So [bu]n = [b]n [u]n is a solution of [a]n x = [b]n.

To see that this solution is unique argue as in Corollary 13.2. Suppose we had two solutions

[a]n [c1]n = [b]n
[a]n [c2]n = [b]n

Subtracting one equation from the other we get

[a]n ([c1]n − [c2]n) = [0]n .
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Because [an]n has no zero divisors (by Corollary 13.3 and Lemma 13.5), we must conclude that

[c1]n − [c2]n = [0]n ⇒ [c1]n = [c2]n

and so the two solutions in fact must coincide. �

Theorem 13.7. Let a, b, n be integers with n > 1, and let d = GCD (a, n). Then

(i) The equation [a]n x = [b]n has a solution in Zn if and only if d|b.
(ii) If d|b, then the equation [a]n x = [b]n has d distinct solutions in Zp.

Proof.

(i) =⇒

Suppose [a]n x = [b]n has a solution in Zn and let [c]n be that solution. We have

[a]n [c]n = [b]n =⇒ [ac]n = [b]n =⇒ ac = b (modn) =⇒ ac− b = kn for some k ∈ Z

But then

(*) b = ac− kn

So anything that divides both a and n, will divide the right hand side of (*) and hence, b (the left hand
side of (*)). In particular, the greatest common divisor of a and n divides the right hand side of (*), so
d = GCD(a, n) divides b.

(i) ⇐=

Suppose d = GCD(a, n) and d|b. Since d = GCD (a, n) there exists integers u, v such that

(**) d = au + nv

Since d|b, there exists an integer k such that b = kd. Now multiply both sides of (**) by k. Then we have

b = kd = a (ku) + n (kv) =⇒ b ≡ a (ku) (modn) =⇒ [b]n = [aku]n = [a]n [ku]n

Hence [ku]n is a solution of [a]n x = [b]n.

(ii) Suppose d = GCD (a, n) and d|b. In fact, since d = GCD (a, n), d|a and d|n. Write

n = rd

a = sd

I claim n| (ar). Indeed,

ar = (sd) r = s (rd) = sn =⇒ n| (ar)

Now suppose [c]n is a solution of [a]n x = [b]n. I claim [c + r]n is also a solution. Indeed, if

[a]n [c]n = [b]n
then if we replace c by c + r, we get

[a]n [c + r]n = [a]n [c]n + [ar]n
= [b]n + [ar]n , since [c]n is a solution of [a]n x = [b]n
= [b]n + [0]n , since ar is divisible by n

= [b]n

But if [c + r]n is a solution so is [c + r + r]n = [c + 2r], as well as [c + 3r]n, etc. Clearly we can generate
lots of solutions this way. The question is, when do stop getting new solutions this way (recall that Zn only
has n elements, so we can’t get an infinite number of solutions). Well, we will keep getting new congruence
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classes until [c + kr]n = [c + n]n. In other words until kr = n. But r was defined as the solution of dr = n.
Therefore, we’ll get the following congruence classes as solutions

[c]n , [c + r]n , [c + 2r]n , . . . , [c + (d− 1) r]n

It is easy to see that these are all distinct since 0 ≤ kr < n for k ∈ {0, 1, . . . , d− 1}


