
LECTURE 12

Modular Arithmetic

The following rules for adding and multiplying even and odd integers should be familar.

e + e = e
e + o = o
o + o = e

e · e = e
e · o = e
o · o = o

That is to say, the sum of two even integers is always an even integer, the sum of an even and an odd integer
is always an odd integer, etc. These simple rules actually provide us with a primitive sort of arithmetic that
we can define for the two elements of

Z2 = {[0]2 , [1]2} = {{even integers} , {odd integers}}

This begs the question: can we define operations like addition and subtraction on a more general Zn;

(1)
[a]n + [b]n = ?
[a]n × [b]n = ?

Because [a]n and [b]n are infinite sets rather than numbers, it is not so clear how one can combine them in
such a way as to get another element of Zn. Here is a tentative definition for the right hand side of (1)

(2)
[a]n + [b]n = [a + b]n
[a]n × [b]n = [ab]n ,

that is to say, the “sum” of the congruence class of a and the congruence class of b is the congruence class
of a + b, and the “product” of the congruence class of a and the congruence class of b is the congruence
class of ab. Even more explicitly,

{. . . , a− 2n, a− n, a, a + n, a + 2n, . . .} ’+’ {. . . , b− 2n, b− n, a, b + n, b + 2n, . . .}
≡ def {. . . , a + b− 2n, a + b− n, a + b, a + b + n, a + b + 2n, . . .}

and

{. . . , a− 2n, a− n, a, a + n, a + 2n, . . .} ’ · ’ {. . . , b− 2n, b− n, a, b + n, b + 2n, . . .}
≡ def {. . . , ab− 2n, ab− n, ab, ab + n, ab + 2n, . . .}

However, there may be a problem with such a naive definition of addition and subtraction: How do we
know that it’s self-consistent?

Example:

Consider the following three sets

P = {prime numbers}
C = {composite numbers}
A = {−1, 0, 1}
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and set X = {P,C,A}. Just as in the situation for congruence classes, every integer z ∈ Z is an element of
one and only one of these three sets. Let (z), z ∈ Z, denote the set (P , C, or A) containing z. Thus,

P = (±2) = (±3) = (±5) = · · ·
C = (±4) = (±6) = (±8) = · · ·
A = (−1) = (0) = (1) .

Now, to define the sum of two elements of X, we might try setting

(3) (x) + (y) = (x + y) ;

however, this turns out to be inconsistent. For

P = (2) = (3) = (5)

but according to (3)
P + P = (2) + (3) = (5) = P

and
P + P = (5) + (3) = (8) = C .

Thus, this definition of addition is not self-consistent.

The basic problem with the example above is that the result of the addition defined by (x) + (y) = (x + y)
depends on the choice of the “representatives” x and y one chooses from the sets P and C, and A. In order
to show that the definition (??) of addition and multiplication in Zn is self-consistent, we must first prove
that these operations do not depend on how we choose representatives a + ns ∈ [a] and b + nt ∈ [b].

Theorem 12.1. If [a]n = [b]n and [c]n = [d]n in Zn, then

[a + c]n = [b + d]n and [ac]n = [bd]n .

Proof.

By Theorem 2.3, since [a]n = [b]n we know that a ≡ b (mod n). Similarly, c ≡ d (mod n). Therefore,

a− b = kn for some k ∈ Z (4)

c− d = k′n for some k′ ∈ Z (5)

Adding these two equations, we get

a + c− (b + d) = (k + k′)n

and so
a + c ≡ b + d (mod n).

Hence by Theorem 2.3 again
[a + c]n = [b + d]n .

Next, let’s rewrite (4) and (5) as

a = b + kn

c = d + k′n

The product of the left hand sides must equal the products of the right hand sides so

ac = (b + kn) (d + k′n) = bd + n (kd + k′b + kk′n) ⇒ ac ≡ bd (mod n)

and so by Theorem 2.3
[ac]n = [bd]n

�

Because of this theorem we now know that the following formal definition of addition and multiplication is
independent of the choice of representatives from each congruence class.
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Definition 12.2. Addition and multiplication in Zn are defined by

[a]n ⊕ [b]n = [a + b]n

and

[a]n × [b]n = [ab]n .

Recall that a binary operation on a set S is a rule for associating with any pair of elements {a, b} of S
another element a ? b of S. Last time we were discussing how to define binary operations on congruence
classes corresponding to the operations of addition and multiplication in Z. This is was seen to be a little
tricky, since not only do we have to define a rule for combining sets of integers that is also a binary operation
(set union does not work), but it also has to be self-consistent. We were led to the above definition; viz.,

[a]n ⊕ [b]n ≡ [a + b]n

and

[a]n × [b]n ≡ [ab]n .

This at least seems to be a binary operation on Zn since the congruence classes [a]n, [b]n, [a+ b]n, and [ab]n
are all elements of Zn. But note that in order to compute the sum or product of two congrence classes, say
A and B in Zn, we first have to choose integers a and b “representing” each class,

A = [a]n

B = [b]n

and then (and only then) we can define the sum A⊕B as the congruence class of a + b and the product of
A×B as the congruence class of ab. The cruxt of the matter is that this method of computing A⊕B and
A×B is self-consistent in the following sense

(i) If [a] is the same congruence class as [c]n and [b]n is the same congruence class as [d]n, then we
need

[a]n ⊕ [b]n = [c]n ⊕ [d]n .

(ii) If [a] is the same congruence class as [c] and [b] is the same congruence class as [d], then we need

[a]n × [b]n = [c]n × [d]n .

These two conditions are guaranteed by the following theorem.

Theorem 12.3. If [a]n = [b]n and [c]n = [d]n in Zn, then

[a + c]n = [b + d]n and [ac]n = [bd]n .

Proof.

By Theorem 2.3, since [a]n = [b]n we know that a ≡ b (mod n). Similarly, c ≡ d (mod n). Therefore, by
Theorem 2.2,

a + c ≡ b + d (mod n) and ac ≡ bd (mod n) .

Hence by Theorem 2.3 again

[a + c]n = [b + d]n and [ac]n = [bd]n .

�

Example:
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Let’s compute the addition and multiplication tables for Z3. In this case we have only three distinct
congruence classes; [0]3 , [1]3 , and [2]3 .

[0]3 + [0]3 = [0 + 0]3 = [0]3

[0]3 + [1]3 = [0 + 1]3 = [1]3

[0]3 + [2]3 = [0 + 2]3 = [2]3

[1]3 + [0]3 = [1 + 0]3 = [1]3

[1]3 + [1]3 = [1 + 1]3 = [2]3

[1]3 + [2]3 = [1 + 2]3 = [3]3 = [0]3

[2]3 + [0]3 = [2 + 0]3 = [2]3

[2]3 + [1]3 = [2 + 1]3 = [3]3 = [0]3

[2]3 + [2]3 = [2 + 2]3 = [4]3 = [1]3

[0]3 × [0]3 = [0 · 0]3 = [0]3

[0]3 × [1]3 = [0 · 1]3 = [0]3

[0]3 × [2]3 = [0 · 2]3 = [0]3

[1]3 × [0]3 = [1 · 0]3 = [0]3

[1]3 × [1]3 = [1 · 1]3 = [1]3

[1]3 × [2]3 = [1 · 2]3 = [2]3

[2[×[0]3 = [2 · 0]3 = [0]3

[2]3 × [1]3 = [2 · 1]3 = [2]3

[2]3 × [2]3 = [2 · 2]3 = [4]3 = [1]3

Theorem 12.4. For any classes [a]n, [b]n, [c]n in Zn,

(1) If [a]n ∈ Zn and [b]n ∈ Zn, then [a]n + [b]n ∈ Zn.
(2) [a]n + ([b]n + [c]n) = ([a]n + [b]n) + [c]n.
(3) [a]n + [b]n = [b]n + [a]n.
(4) [a]n + [0]n = [a]n.
(5) For each [a]n ∈ Zn, the equation [a]n + X = [0]n, has a solution in Zn.
(6) If [a]n ∈ Zn and [b]n ∈ Zn, then [a]n × [b]n ∈ Zn.
(7) [a]n × ([b]n × [c]n) = ([a]n · [b]n) · [c]n.
(8) [a]n × ([b]n + [c]n) = ([a]n × [b]n) + ([a]n × [c]n).
(9) [a]n × [b]n = [b]n × [a]n.

(10) [a]n × [1]n = [a]n.

New Notation:

When it is clear from the context that we are working in Zn we shall often denote a congruence class [a]n
by simply a and the operations + and × on Zn by simply + and ·. Thus, for example in the context of
arithmetic in Z3, you might see

1 + 2 = 0

because
[1]3 + [2]3 = [3]3 = [0]3 .


