LECTURE 10

Review Session for First Examination

1. Techniques of Proof

- Contrapositive Method
- Proof by Contradiction
- Proof by Induction

2. Definitions (things to be memorized)

- Well Ordering Axiom: Every non-empty subset of \mathbb{N} has a least element.
- Even and Odd Integers: an integer z is even if z = 2k for some integer k; z is odd if z = 2k + 1 for some integer k.
- surjective function: a function $f: A \to B$ is surjective if

 $b \in B \implies b = f(a)$ for some $a \in A$

• **injective function:** a function $f : A \to B$ is injective if

$$f(x) = f(x') \implies x = x'$$

- bijective function: a function $f: A \to B$ is bijective if it is both injective and surjective.
- the Division Algorithm: For any a, b ∈ Z, b ≠ 0, there exists unique integers p, q such that
 (i) a = bq + r
 - (ii) $0 \le r < b$
- Greatest Common Divisor: The greatest common divisor, GCD(a, b) of two integers a, b not both zero is the unique integer d such that
 - d|a and d|b
 - If c|a and c|b then $c \leq d$
- relatively prime: Two integers not both zero are relatively prime if GCD(a, b) = 1.
- prime number: An integer $p \neq 0, \pm 1$ is said to be prime if its only factors are $\{\pm 1, \pm p\}$.

3. Sets and Functions

- Sets See HW problems
- Functions: 1:1, onto, and bijective functions

4. Chapter 1.

THEOREM 10.1. (THE DIVISION ALGORITHM) Let a, b be integers with b > 0. Then there exists unique integers q and r such that

COROLLARY 10.2. Let a, b be integers with $b \neq 0$. Then there exists unique integers q and r such that

$$\begin{array}{ll} (i) & a = bq + r \\ (ii) & 0 \leq r < |b| \end{array}$$

THEOREM 10.3. Let a and b be integers, not both zero, and let d = GCD(a, b). Then there exists (not necessarily unique) integers u and v such that

$$d = au + bv$$
 .

N.B. The converse of this theorem is not true.

COROLLARY 10.4. Let a and b be integers, not both zero, and let d be a positive integer. Then d = GCD(a, b) if and only if d satisfies

$$\begin{array}{ll} (i) & d \mid a \quad and \quad d \mid b \\ (ii) & if \ c \mid a \ and \ c \mid b, \ then \ c \mid d \quad . \end{array}$$

THEOREM 10.5. If $a \mid (bc)$ and GCD(a, b) = 1, then $a \mid c$.

LEMMA 10.6. If $a, b, q, r \in \mathbb{Z}$ and a = bq + r, then

$$GCD(a, b) = GCD(b, r)$$
 .

THEOREM 10.7. Let p be an integer with $p \neq 0, \pm 1$. Then p is prime if and only if p has this property:

$$p \mid bc \Rightarrow p \mid b \quad or \quad p \mid c$$

COROLLARY 10.8. If p is prime and $p \mid a_1 a_2 \cdots a_n$, then p divides at least one of the a_i .

THEOREM 10.9. Every integer n except $0, \pm 1$ is the product of primes

THEOREM 10.10. THE FUNDAMENTAL THEOREM OF ARITHMETIC Every integer n except $0, \pm 1$ is a product of primes. This prime factorization is unique in the following sense: If

$$n = p_1 p_2 \cdots p_r$$
 and $n = q_1 q_2 \cdots q_s$

with each p_i,q_j prime, then r = s (that is the number of factors is the same) and after reordering and relabeling the q_i 's

$$p_1 = \pm q_1$$

$$p_2 = \pm q_2$$

$$\vdots$$

$$p_r = \pm q_r$$

COROLLARY 10.11. Every integer n > 1 can be written in one and only one way as

$$n = (p_1)^{s_1} (p_2)^{s_2} \cdots (p_r)^{s_r}$$

where the s_i are positive integers and the p_i are positive prime integers such that

$$p_1 < p_2 < \dots < p_r$$