LECTURE 9

Divisibility, Cont'd

We ended last time with the following lemma:

LEMMA 9.1. If $a, b, q, r \in \mathbb{Z}$ and a = bq + r, then

$$GCD(a, b) = GCD(b, r)$$
 .

The lemma above is used in proving the following algorithm for finding the greatest common divisor of two integers.

THEOREM 9.2. THE EUCLIDEAN ALGORITHM Let a and b be positive integers with $a \ge b$. If $b \mid a$, then GCD(a, b) = b. If $b \nmid a$, then the following algorithm

a	=	$bq_0 + r_0$;	$0 < r_0 < b$
b	=	$r_0 q_1 + r_1$;	$0 \le r_1 < r_o$
r_0	=	$r_1q_2 + r_2$;	$0 \le r_2 < r_1$
r_1	=	$r_2q_3 + r_3$;	$0 \le r_3 < r_2$
r_2	=	$r_3q_4 + r_4$;	$0 \le r_4 < r_3$
		:		

terminates after a finite number of steps; that is for some integer t:

 $\begin{array}{rcl} r_{t-2} & = & r_{t-1}q_t + r_t & & ; & \quad 0 \leq r_t < r_{t-1} \\ r_{t-1} & = & r_tq_{t+1} + 0 & . \end{array}$

Then r_t , the last non-zero remainder, is the greatest common divisor of a and b.

Proof.

If $b \mid a$ then a = bq + 0, so GCD(a, b) = GCD(b, 0) = b by Lemma 1.7. If $b \nmid a$, then by the division algorithm there exists $q \in \mathbb{Z}$ such that

$$b = bq_0 + r_0$$

and moreover, $0 < r_0 < b$. Applying Lemma 1.7, we have

$$(9.1) GCD(a,b) = GCD(b,r_0)$$

If $r_0 \mid b$, then we have $GCD(b, r) = r_0$; and so

$$GCD(a,b) = GCD(b,r_0) = r_0 \quad .$$

If $r_0 \nmid b$, then by the division algorithm

$$b = q_1 r_0 + r_1$$

with $0 < r_1 < r_0$. Applying Lemma 1.7 again, we have

which together with (9.1) yields

 $(9.3) GCD(a,b) = GCD(r_0,r_1) .$

If $r_1 | r_0$, then $GCD(r_0, r_1) = r_1$ and we have

$$GCD(a,b) = GCD(r_0,r_1) = r_1$$

Otherwise, if $r_1 \nmid r_0$, then we have by the division algorithm

 $r_0 = r_1 q_2 + r_2$.

 $GCD(r_1, r_0) = GCD(r_1, r_2) \quad .$

Then by Lemma 1.7

(9.4)

So, (9.3) and (9.4) imply

 $(9.5) GCD(a,b) = GCD(r_1,r_2)$

One continues in this manner until one reaches a step t where $r_{t+1} = 0$. The last non-zero remainder r_t will then be the greatest common divisor of a and b. (This process terminates because the numbers r_i satisfy

 $b > r_o > r_1 > \dots > r_{t-1} > r_t$

and are bounded from below by zero.)

Example. Find the greatest common divisor of 4236 and 2592.

4236	=	(1)(2592) + 1704
2592	=	(1)(1704) + 888
1704	=	(1)(888) + 816
888	=	(1)(816) + 72
816	=	(11)(72) + 24
72	=	(3)(24) + 0

Therefore

$$GCD(4236, 2592) = 24$$

1. Primes and Unique Factorization

Every non-zero integer n has at least four distinct factors; 1, -1, n and -n. Integers that have **only** these divisors play a crucial role in number theory.

DEFINITION 9.3. An integer p is said to be **prime** if $p \neq 0, \pm 1$ and the only divisors of p are ± 1 and $\pm p$. If an integer z other than $0, \pm 1$ that is not prime, is said to be **composite**. h

Note that if z > 0 is composite, then we can write z as

z = pq with 1 < p, q < z

PROPOSITION 9.4. The set of prime numbers is infinite.

Proof.

Suppose on the contrary, that there is only a finite number of primes. Then there is a maximal prime number p_{max} and every every number z greater than p must be divisible by some r with

 $2 \leq r < z \quad .$

For the if $z > p_{\text{max}}$, then z must be composite and so capable of being written

$$z = z_1 z_2$$
 with $1 < z_1, z_2 < z$

On the other hand, if either of the factor z_1 or z_2 is greater than p_{max} , then it too must be composite and so capable of being written as a product of two smaller integers. In fact, whenever a factorization of z has

a factor $q > p_{\text{max}}$, the factor q can be replaced by two smaller factors. Since z is finite, by a finite process we will be able to write z as a product of integers between 2 and p_{max} .

Now consider the integer

$$z = p_{\max}! + 1 \quad .$$

If n is any integer such that $2 \le n \le p_{\max}$, then

$$z = (2)(3)\cdots(n)\cdots(p_{\max}-1)(p_{\max}) + 1$$

= $[(2)(3)\cdots(n-1)(n+1)\cdots(p_{\max}-1)(p_{\max})](n) + 1$

and so the Division Algorithm applied to n and z has remainder 1. Thus, z is not divisible by any integer between 2 and p_{max} . But this contracdicts the conclusion of the preceding paragraph. Hence, there can be no maximal prime. Hence, there cannot be a finite number of primes.

One immediate consequence of the definition of a prime number is that if p and q are prime and p divides q then $p = \pm q$. This is because the definition excludes the possibility that $p = \pm 1$.

Here is a deeper result.

THEOREM 9.5. Let p be an integer with $p \neq 0, \pm 1$. Then p is prime if and only if p has this property:

$$p \mid bc \Rightarrow p \mid b \quad or \quad p \mid c$$

Proof.

 \Rightarrow

Suppose p is prime and $p \mid bc$. Consider the greatest common divisor GCD(p, b) of p and b. Now GCD(p, b) must be a positive integer greater than or equal to 1 that divides both p and b. The only positive divisors of p are 1 and |p|. Therefore,

$$GCD(p,b) \in \{1, |p|\}$$

If GCD(p,b) = |p|, then certainly $p \mid b$. If GCD(p,b) = 1, then $p \mid c$ by Theorem 8.5. Thus, in every case, $p \mid b$ or $p \mid c$.

 \Leftarrow

Let p be an integer $\neq 0, \pm 1$ with the property that (9.6) $p \mid bc \Rightarrow p \mid b \text{ or } p \mid c$. Suppose p = st. Then certainly $p \mid st$ and so by hypothesis (9.6), either $p \mid s \text{ or } p \mid t$. But then either (9.7) $p \mid s \Rightarrow |s| \ge |p|$ or (9.8) $p \mid t \Rightarrow |t| \ge |p|$

But since s and t are to be factors of p we must have

 $(9.9) |s| \le p and |t| \le p$

Thus, comparing (9.7), (9.8) and (9.9) we conclude that either

$$|s| = |p|$$

 $|t| = |p| \quad .$

or

 or

Thus, either

 $s = \pm p \qquad \Rightarrow \qquad q = \pm 1$

 $t = \pm p \qquad \Rightarrow \qquad p = \pm 1$.

Hence the only divisors of p are ± 1 and $\pm p$; and so p is prime.

Below is an easy corollary to this theorem.

COROLLARY 9.6. If p is prime and $p \mid a_1 a_2 \cdots a_n$, then p divides at least one of the a_i .

Proof.

By the previous theorem, if p is prime and p divides $a_1a_2\cdots a_n = a_1(a_2\cdots a_n)$, then p divides a_1 or p divides $a_2\cdots a_n$. If $p \mid a_1$ we are finished. Otherwise, $p \mid a_2(a_3\cdots a_n)$. Applying Theorem 1.8 again, we conclude either p divides a_2 or p divides $a_3 \cdots a_n$. If p divides a_2 we are done, if not then we apply Theorem 1.8 to $a_3 \cdots a_n = a_3(a_4 \cdots a_n)$. After at most n steps, there must be an integer $k, 1 \leq k \leq n$, such that $p \mid a_k$. \Box

THEOREM 9.7. Every integer n except $0, \pm 1$ is the product of primes

Proof. First note that if $n = p_1 \cdots p_k$ is a product of primes, then $-n = (-p_1)p_2 \cdots p_k$ is also a product of primes. Hence it suffices to consider only the case when n > 1. Let S denote the set of positive integers greater than 1 that are *not* expressible as a product of primes. We shall show that S is empty. Assume on the contrary that S is non-empty. Then by the Well-Ordering Axiom, S has a least element m. Since $m \in S$, m is not itself prime. m must therefore have positive divisors other than 1 or m. Say m = ab, with 1 < a < m and 1 < b < m. Now since a and b are less than m, and since m is the smallest element of S, $a \notin S$ and $b \notin S$. Hence, both a and b are expressible as products of primes

$$a = p_1 \cdots p_r$$
$$b = q_1 \cdots q_s$$

But then

$$m = ab = p_1 \cdots p_r q_1 \cdots q_s$$

is a product of primes, so $m \notin S$. Hence we have a contradiction. Therefore, the set S must be empty. \Box

Any integer other than $0, \pm 1$ that is not prime is called **composite**; since it can always be represented as a product of primes. This representation is not unique however. For example,

4

$$5 = 3 \cdot 3 \cdot 5$$
$$= -3 \cdot 5 \cdot -3$$
$$= -5 \cdot 3 \cdot -3$$

etc.. But notice that these different factorizations are essentially the same; the only difference being the ordering and the sign of the pairs of factors.

THEOREM 9.8. THE FUNDAMENTAL THEOREM OF ARITHMETIC Every integer n except $0, \pm 1$ is a product of primes. This prime factorization is unique in the following sense: If

$$n = p_1 p_2 \cdots p_r$$
 and $n = q_1 q_2 \cdots q_s$

with each p_i,q_j prime, then r = s (that is the number of factors is the same) and after reordering and relabeling the q_i 's

$$p_1 = \pm q_1$$

$$p_2 = \pm q_2$$

$$\vdots$$

$$p_r = \pm q_r$$

Proof.

32

By Theorem 1.10 every integer n other than $0, \pm 1$ has a prime factorization. Suppose n has two factorizations, as listed in the statement of the theorem. Then

$$p_1(p_2p_3\cdots p_r)=q_1q_2q_3\cdots q_s$$

so that $p_1 \mid (q_1q_2\cdots q_n)$. By Corollary 1.9 (if p is prime and $p \mid (a_1a_2\cdots a_n)$ then p divides at least one of the factors a_1), p_1 must divide at least one of the q_i . By reordering an relabeling the q_i 's if necessary, we may assume that $p_1 \mid q_1$. Since q_1 and p_1 are prime, we must have $p_1 = \pm q_1$. Consequently,

$$(\pm q_1)(p_2p_3\cdots p_r)=q_1q_2q_3\cdots q_s$$

Dividing both sides by q_1 yields

$$(\pm 1)p_2(p_3p_4\cdots p_r) = q_2q_3\cdots q_s$$

which shows that p_2 divides $q_2q_3 \cdots q_s$. As above, by Corollary 1.9, p_2 must divide one of the factors q_2, q_3, \ldots, q_s , which by a suitable reordering and relabeling we may take to be q_2 . Hence $p_2 = \pm q_2$, and

$$(\pm 1)(\pm q_2)(p_3p_4\cdots p_r) = q_2q_3\cdots q_s$$

Dividing both sides by q_2 yields

$$(\pm 1)(\pm 1)p_3p_4\cdots p_r = q_3q_4\cdots q_s$$

We can continue in this manner until we run out of prime factors p_i on the left or until we run out of the prime factors q_i on the right. If r < s, then at the last step we have

$$\underbrace{(\pm 1)(\pm 1)\cdots(\pm 1)}_{r \text{ factors}} = q_{r+1}q_{r+2}\cdots q_s$$

Thus,

$$q_{r+1}q_{r+2}\cdots q_s = \pm 1$$

But the q_i are all prime and so they cannot be divisors of 1. Hence we have a contradiction. If s < r we end up with the statement

$$\underbrace{\pm 1)(\pm 1)\cdots(\pm 1)}_{s-\text{factors}} \quad (p_{s+1}p_{s+2}\cdots p_r) = 1$$

which also leads to a contradiction. Hence s = r and after the elimination process described above we are left with

$$p_1 = \pm q_1$$

$$p_2 = \pm q_2$$

$$\vdots$$

$$p_r = \pm q_r \quad .$$

If we restrict attention to positive integers n, then we have an even stronger version of the unique factorization theorem.

COROLLARY 9.9. Every integer n > 1 can be written in one and only one way as

(

$$n = (p_1)^{s_1} (p_2)^{s_2} \cdots (p_r)^s$$

where the s_i are positive integers and the p_i are positive prime integers such that

$$p_1 < p_2 < \dots < p_r$$