
LECTURE 9

Divisibility, Cont’d

We ended last time with the following lemma:

Lemma 9.1. If a, b, q, r ∈ Z and a = bq + r, then

GCD(a, b) = GCD(b, r) .

The lemma above is used in proving the following algorithm for finding the greatest common divisor of two
integers.

Theorem 9.2. THE EUCLIDEAN ALGORITHM Let a and b be positive integers with a ≥ b. If b | a, then
GCD(a, b) = b. If b - a, then the following algorithm

a = bq0 + r0 ; 0 < r0 < b

b = r0q1 + r1 ; 0 ≤ r1 < ro

r0 = r1q2 + r2 ; 0 ≤ r2 < r1

r1 = r2q3 + r3 ; 0 ≤ r3 < r2

r2 = r3q4 + r4 ; 0 ≤ r4 < r3
...

terminates after a finite number of steps; that is for some integer t:

rt−2 = rt−1qt + rt ; 0 ≤ rt < rt−1

rt−1 = rtqt+1 + 0 .

Then rt, the last non-zero remainder, is the greatest common divisor of a and b.

Proof.

If b | a then a = bq + 0, so GCD(a, b) = GCD(b, 0) = b by Lemma 1.7. If b - a, then by the division
algorithm there exists q ∈ Z such that

a = bq0 + r0

and moreover, 0 < r0 < b. Applying Lemma 1.7, we have

(9.1) GCD(a, b) = GCD(b, r0) .

If r0 | b, then we have GCD(b, r) = r0; and so

GCD(a, b) = GCD(b, r0) = r0 .

If r0 - b, then by the division algorithm
b = q1r0 + r1

with 0 < r1 < r0. Applying Lemma 1.7 again, we have

(9.2) GCD(b, r0) = GCD(r0, r1)

which together with (9.1) yields

(9.3) GCD(a, b) = GCD(r0, r1) .
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If r1 | r0, then GCD(r0, r1) = r1 and we have

GCD(a, b) = GCD(r0, r1) = r1 .

Otherwise, if r1 - r0, then we have by the division algorithm

r0 = r1q2 + r2 .

Then by Lemma 1.7

(9.4) GCD(r1, r0) = GCD(r1, r2) .

So, (9.3) and (9.4) imply

(9.5) GCD(a, b) = GCD(r1, r2)

One continues in this manner until one reaches a step t where rt+1 = 0. The last non-zero remainder rt will
then be the greatest common divisor of a and b. (This process terminates because the numbers ri satisfy

b > ro > r1 > · · · > rt−1 > rt

and are bounded from below by zero.) �

Example. Find the greatest common divisor of 4236 and 2592.

4236 = (1)(2592) + 1704

2592 = (1)(1704) + 888

1704 = (1)(888) + 816

888 = (1)(816) + 72

816 = (11)(72) + 24

72 = (3)(24) + 0

Therefore

GCD(4236, 2592) = 24 .

1. Primes and Unique Factorization

Every non-zero integer n has at least four distinct factors; 1, -1, n and -n. Integers that have only these
divisors play a crucial role in number theory.

Definition 9.3. An integer p is said to be prime if p 6= 0,±1 and the only divisors of p are ±1 and ±p.
If an integer z other than 0,±1 that is not prime, is said to be composite. h

Note that if z > 0 is composite, then we can write z as

z = pq with 1 < p, q < z

Proposition 9.4. The set of prime numbers is infinite.

Proof.

Suppose on the contrary, that there is only a finite number of primes. Then there is a maximal prime
number pmax and every every number z greater than p must be divisible by some r with

2 ≤ r < z .

For the if z > pmax, then z must be composite and so capable of being written

z = z1z2 with 1 < z1, z2 < z

On the other hand, if either of the factor z1 or z2 is greater than pmax, then it too must be composite and
so capable of being written as a product of two smaller integers. In fact, whenever a factorization of z has
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a factor q > pmax, the factor q can be replaced by two smaller factors. Since z is finite, by a finite process
we will be able to write z as a product of integers between 2 and pmax.

Now consider the integer
z = pmax! + 1 .

If n is any integer such that 2 ≤ n ≤ pmax, then

z = (2)(3) · · · (n) · · · (pmax − 1)(pmax) + 1

= [(2)(3) · · · (n− 1)(n + 1) · · · (pmax − 1)(pmax)] (n) + 1

and so the Division Algorithm applied to n and z has remainder 1. Thus, z is not divisible by any integer
between 2 and pmax. But this contracdicts the conclusion of the preceding paragraph. Hence, there can be
no maximal prime. Hence, there cannot be a finite number of primes. �

One immediate consequence of the definition of a prime number is that if p and q are prime and p divides
q then p = ±q. This is because the definition excludes the possibility that p = ±1.

Here is a deeper result.

Theorem 9.5. Let p be an integer with p 6= 0,±1. Then p is prime if and only if p has this property:

p | bc ⇒ p | b or p | c .

Proof.

⇒

Suppose p is prime and p | bc. Consider the greatest common divisor GCD(p, b) of p and b. Now GCD(p, b)
must be a positive integer greater than or equal to 1 that divides both p and b. The only positive divisors
of p are 1 and |p|. Therefore,

GCD(p, b) ∈ {1, |p|}
If GCD(p, b) = |p|, then certainly p | b. If GCD(p, b) = 1, then p | c by Theorem 8.5. Thus, in every case,
p | b or p | c.

⇐

Let p be an integer 6= 0,±1 with the property that

(9.6) p | bc ⇒ p | b or p | c .

Suppose p = st. Then certainly p | st and so by hypothesis (9.6), either p | s or p | t. But then either

(9.7) p | s ⇒ |s| ≥ |p|
or

(9.8) p | t ⇒ |t| ≥ |p|
But since s and t are to be factors of p we must have

(9.9) |s| ≤ p and |t| ≤ p

Thus, comparing (9.7), (9.8) and (9.9) we conclude that either

|s| = |p|
or

|t| = |p| .

Thus, either
s = ±p ⇒ q = ±1

or
t = ±p ⇒ p = ±1 .
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Hence the only divisors of p are ±1 and ±p; and so p is prime. �

Below is an easy corollary to this theorem.

Corollary 9.6. If p is prime and p | a1a2 · · · an, then p divides at least one of the ai.

Proof.

By the previous theorem, if p is prime and p divides a1a2 · · · an = a1(a2 · · · an), then p divides a1 or p divides
a2 · · · an. If p | a1 we are finished. Otherwise, p | a2(a3 · · · an). Applying Theorem 1.8 again, we conclude
either p divides a2 or p divides a3 · · · an. If p divides a2 we are done, if not then we apply Theorem 1.8 to
a3 · · · an = a3(a4 · · · an). After at most n steps, there must be an integer k, 1 ≤ k ≤ n, such that p | ak. �

Theorem 9.7. Every integer n except 0,±1 is the product of primes

Proof. First note that if n = p1 · · · pk is a product of primes, then −n = (−p1)p2 · · · pk is also a product of
primes. Hence it suffices to consider only the case when n > 1. Let S denote the set of positive integers
greater than 1 that are not expressible as a product of primes. We shall show that S is empty. Assume
on the contrary that S is non-empty. Then by the Well-Ordering Axiom, S has a least element m. Since
m ∈ S, m is not itself prime. m must therefore have positive divisors other than 1 or m. Say m = ab, with
1 < a < m and 1 < b < m. Now since a and b are less than m, and since m is the smallest element of S,
a /∈ S and b /∈ S. Hence, both a and b are expressible as products of primes

a = p1 · · · pr
b = q1 · · · qs .

But then

m = ab = p1 · · · prq1 · · · qs
is a product of primes, so m /∈ S. Hence we have a contradiction. Therefore, the set S must be empty. �

Any integer other than 0,±1 that is not prime is called composite; since it can always be represented as
a product of primes. This representation is not unique however. For example,

45 = 3 · 3 · 5
= −3 · 5 · −3

= −5 · 3 · −3

etc.. But notice that these different factorizations are essentially the same; the only difference being the
ordering and the sign of the pairs of factors.

Theorem 9.8. THE FUNDAMENTAL THEOREM OF ARITHMETIC Every integer n except 0,±1 is a
product of primes. This prime factorization is unique in the following sense: If

n = p1p2 · · · pr and n = q1q2 · · · qs
with each pi,qj prime, then r = s (that is the number of factors is the same) and after reordering and
relabeling the qj’s

p1 = ±q1
p2 = ±q2

...

pr = ±qr .

Proof.
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By Theorem 1.10 every integer n other than 0,±1 has a prime factorization. Suppose n has two factoriza-
tions, as listed in the statement of the theorem. Then

p1(p2p3 · · · pr) = q1q2q3 · · · qs ,

so that p1 | (q1q2 · · · qn). By Corollary 1.9 (if p is prime and p | (a1a2 · · · an) then p divides at least one of
the factors a1), p1 must divide at least one of the qi. By reordering an relabeling the qi’s if necessary, we
may assume that p1 | q1. Since q1 and p1 are prime, we must have p1 = ±q1. Consequently,

(±q1)(p2p3 · · · pr) = q1q2q3 · · · qs .

Dividing both sides by q1 yields

(±1)p2(p3p4 · · · pr) = q2q3 · · · qs ,

which shows that p2 divides q2q3 · · · qs. As above, by Corollary 1.9, p2 must divide one of the factors
q2, q3, . . . , qs, which by a suitable reordering and relabeling we may take to be q2. Hence p2 = ±q2, and

(±1)(±q2)(p3p4 · · · pr) = q2q3 · · · qs .

Dividing both sides by q2 yields

(±1)(±1)p3p4 · · · pr = q3q4 · · · qs .

We can continue in this manner until we run out of prime factors pi on the left or until we run out of the
prime factors qj on the right. If r < s, then at the last step we have

(±1)(±1) · · · (±1)︸ ︷︷ ︸ = qr+1qr+2 · · · qs

r factors

.

Thus,
qr+1qr+2 · · · qs = ±1 .

But the qi are all prime and so they cannot be divisors of 1. Hence we have a contradiction. If s < r we
end up with the statement

(±1)(±1) · · · (±1)︸ ︷︷ ︸ (ps+1ps+2 · · · pr) = 1

s-factors

which also leads to a contradiction. Hence s = r and after the elimination process described above we are
left with

p1 = ±q1
p2 = ±q2

...
pr = ±qr .

�

If we restrict attention to positive integers n, then we have an even stronger version of the unique factor-
ization theorem.

Corollary 9.9. Every integer n > 1 can be written in one and only one way as

n = (p1)s1(p2)s2 · · · (pr)sr

where the si are positive integers and the pi are positive prime integers such that

p1 < p2 < · · · < pr .


