LECTURE 9

Divisibility, Cont’d

We ended last time with the following lemma:

LeEmMMA 9.1. Ifa,b,q,r € Z and a = bqg + r, then
GCD(a,b) = GCD(b,r)

The lemma above is used in proving the following algorithm for finding the greatest common divisor of two
integers.

THEOREM 9.2. THE EUCLIDEAN ALGORITHM Let a and b be positive integers with a > b. If b | a, then
GCD(a,b) =0b. If b1a, then the following algorithm

= bgo+ 1o ; 0<ro<b
b = roq1+nr 3 0<r <r,
To = T1g2+ 712 ; 0<rs<nm
rT = Toq3+ T3 ; 0<r3<nrg
re = T3q4+T4 ; 0<ry<rs

terminates after a finite number of steps; that is for some integer t:
Te—2 = T—1Ge Ty ; 0<7 <1
ri—1 = Tiqe41 +0

Then 14, the last non-zero remainder, is the greatest common divisor of a and b.

Proof.

If b | a then a = bg 4+ 0, so GCD(a,b) = GCD(b,0) = b by Lemma 1.7. If b { a, then by the division
algorithm there exists ¢ € Z such that

a=bgy+ 19
and moreover, 0 < rg < b. Applying Lemma 1.7, we have
(9.1) GCD(a,b) = GCD(b, 1)

If ro | b, then we have GCD(b,r) = r¢; and so
GCD(a,b) = GCD(b,r9) =g
If ro 1 b, then by the division algorithm

b=qro+m1
with 0 < r; < rg. Applying Lemma 1.7 again, we have
(9.2) GCD(b,19) = GCD(rg,r1)
which together with (9.1) yields
(9.3) GCD(a,b) = GCD(rg,r)
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If ry | ro, then GCD(rg,71) = 71 and we have
GCD(a,b) = GCD(rg,r) =1
Otherwise, if r1 1 7, then we have by the division algorithm
To =7T1G2 + 72

Then by Lemma 1.7

(94) GCD(?“hT‘()) = GCD(Tl, 7’2)
So, (9.3) and (9.4) imply
(9.5) GCD(a,b) = GCD(ry,r2)

One continues in this manner until one reaches a step ¢ where r;; = 0. The last non-zero remainder r; will
then be the greatest common divisor of a and b. (This process terminates because the numbers r; satisfy

b>ro>r1 > >ri_1>1

and are bounded from below by zero.) ]

Example. Find the greatest common divisor of 4236 and 2592.

4236 = (1)(2592) + 1704
2592 = (1)(1704) + 888
1704 = (1)(888) + 816
888 = (1)(816)+ 72
816 = (11)(72)+ 24
72 (3)(24) + 0

Therefore
GCD(4236,2592) = 24

1. Primes and Unique Factorization

Every non-zero integer n has at least four distinct factors; 1, -1, n and -n. Integers that have only these
divisors play a crucial role in number theory.

DEFINITION 9.3. An integer p is said to be prime if p # 0,+1 and the only divisors of p are £1 and £p.
If an integer z other than 0, %1 that is not prime, is said to be composite. h

Note that if z > 0 is composite, then we can write z as
zZ =pq with 1 <p,g< z

PROPOSITION 9.4. The set of prime numbers is infinite.

Proof.

Suppose on the contrary, that there is only a finite number of primes. Then there is a maximal prime
number Py, and every every number z greater than p must be divisible by some r with

2<r<z
For the if z > ppax, then z must be composite and so capable of being written
Z = 2122 with 1 < 21,20 < 2

On the other hand, if either of the factor z; or zy is greater than pya.x, then it too must be composite and
so capable of being written as a product of two smaller integers. In fact, whenever a factorization of z has
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a factor ¢ > pmax, the factor ¢ can be replaced by two smaller factors. Since z is finite, by a finite process
we will be able to write z as a product of integers between 2 and ppax-

Now consider the integer
z = pmaX! + 1
If n is any integer such that 2 < n < ppax, then

(2)(3) e (’I’L) U (pmax - 1)(pmax) +1
= [(2)(3) U (n - 1)(” + 1) T (pmax - 1)(pmax)] (n) +1

and so the Division Algorithm applied to n and z has remainder 1. Thus, z is not divisible by any integer
between 2 and pnax. But this contracdicts the conclusion of the preceding paragraph. Hence, there can be
no maximal prime. Hence, there cannot be a finite number of primes. O

z

One immediate consequence of the definition of a prime number is that if p and ¢ are prime and p divides

q then p = +q. This is because the definition excludes the possibility that p = +1.

Here is a deeper result.

THEOREM 9.5. Let p be an integer with p # 0,4+1. Then p is prime if and only if p has this property:
plbc = plb or plc

Proof.

=

Suppose p is prime and p | be. Consider the greatest common divisor GC'D(p,b) of p and b. Now GCD(p,b)
must be a positive integer greater than or equal to 1 that divides both p and b. The only positive divisors
of p are 1 and |p|. Therefore,

GCD(p,b) € {1,|pl}

If GCD(p,b) = |p|, then certainly p | b. If GCD(p,b) = 1, then p | ¢ by Theorem 8.5. Thus, in every case,
plborplec.

P

Let p be an integer # 0,+1 with the property that

(9.6) p | be = plb or plec
Suppose p = st. Then certainly p | st and so by hypothesis (9.6), either p | s or p | t. But then either
(9-7) pls = s >]pl
or
(9-8) plt = [t|=pl
But since s and ¢ are to be factors of p we must have
(9.9) ls| <p and [t <p
Thus, comparing (9.7), (9.8) and (9.9) we conclude that either
Is| = Ip|

or

It] = [p|

Thus, either
s==xp = q==+1

or
t=4p =  p==+l
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Hence the only divisors of p are £1 and +p; and so p is prime. O

Below is an easy corollary to this theorem.

COROLLARY 9.6. If p is prime and p | a1as - - - ay, then p divides at least one of the a;.

Proof.

By the previous theorem, if p is prime and p divides ajas - - - a, = ay(az - - - ay,), then p divides a; or p divides
as--+an. If p| a; we are finished. Otherwise, p | az(as---ay,). Applying Theorem 1.8 again, we conclude
either p divides as or p divides a3 ---a,. If p divides as we are done, if not then we apply Theorem 1.8 to
as---a, = az(aqg---ap). After at most n steps, there must be an integer k, 1 < k < n, such that p | ax. O

THEOREM 9.7. FEwvery integer n except 0,+1 is the product of primes

Proof. First note that if n = py - - - pg is a product of primes, then —n = (—p1)p2 - - - px is also a product of
primes. Hence it suffices to consider only the case when n > 1. Let S denote the set of positive integers
greater than 1 that are not expressible as a product of primes. We shall show that S is empty. Assume
on the contrary that S is non-empty. Then by the Well-Ordering Axiom, S has a least element m. Since
m € S, m is not itself prime. m must therefore have positive divisors other than 1 or m. Say m = ab, with
l1<a<mandl<b< m. Now since a and b are less than m, and since m is the smallest element of S,
a¢ S andb¢S. Hence, both a and b are expressible as products of primes

a = pi-pr
b = @-qs
But then
m=ab=p1--prq1-qs
is a product of primes, so m ¢ S. Hence we have a contradiction. Therefore, the set S must be empty. O

Any integer other than 0,41 that is not prime is called composite; since it can always be represented as
a product of primes. This representation is not unique however. For example,

45 = 3.3.5
= —3.5--3
= -5.3.--3

etc.. But notice that these different factorizations are essentially the same; the only difference being the
ordering and the sign of the pairs of factors.

THEOREM 9.8. THE FUNDAMENTAL THEOREM OF ARITHMETIC Every integer n except 0,+1 is a
product of primes. This prime factorization is unique in the following sense: If

n=pip2:--pPr and n=dq192 (s

with each p;,q; prime, then r = s (that is the number of factors is the same) and after reordering and
relabeling the q;’s

p1 = *q
p2 = *q
Pr = iqr

Proof.
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By Theorem 1.10 every integer n other than 0,+1 has a prime factorization. Suppose n has two factoriza-
tions, as listed in the statement of the theorem. Then

p1(p2p3 - Pr) = Q142q3 -+ Qs

so that p1 | (¢1q2 - ¢n). By Corollary 1.9 (if p is prime and p | (a1az - - - ay,) then p divides at least one of
the factors ap), p1 must divide at least one of the ¢;. By reordering an relabeling the ¢;’s if necessary, we
may assume that p; | ¢1. Since ¢; and p; are prime, we must have p; = +¢;. Consequently,

(£q1)(p2p3 - Pr) = q1G203 -+ 4s
Dividing both sides by ¢; yields

(£1)p2(pspa---pr) =q2q3---qs

which shows that po divides ga2qs---gs. As above, by Corollary 1.9, po must divide one of the factors
q2,qs, - - - ,qs, which by a suitable reordering and relabeling we may take to be g». Hence ps = +¢o, and

(£1)(£q2)(p3pa - pr) = G243 qs
Dividing both sides by gs yields
(£1)(£1)pspsa- - Pr = q3qa- - qs

We can continue in this manner until we run out of prime factors p; on the left or until we run out of the
prime factors g; on the right. If » < s, then at the last step we have

(il)(il)'“(il) = 4r+14r+2-°°Qs

r factors

Thus,

Qr4+1Gr42 - q¢s = £1
But the ¢; are all prime and so they cannot be divisors of 1. Hence we have a contradiction. If s < r we
end up with the statement

(E1)(ED) - (£1) (araposs-pr) = 1

s-factors

which also leads to a contradiction. Hence s = r and after the elimination process described above we are
left with

p1 = *q1
P2 = =@
pr = =g

O

If we restrict attention to positive integers n, then we have an even stronger version of the unique factor-
ization theorem.
COROLLARY 9.9. Fwvery integer n > 1 can be written in one and only one way as
n=(p1)* (p2) - (pr)
where the s; are positive integers and the p; are positive prime integers such that

p1<p2<---<Dpr



