LECTURE 3

Methods of Proof, cont’d

Last time we discussed some of the basic techniques for proving propositions. We began with the notion of
a direct proof and one of its implementations, the forward-backward method. Then we discussed an
alternative to the direct proof, proof by contradiction.

I would like to begin today’s lecture with another example of proof by contradiction.
EXAMPLE 3.1. Use the method of proof by contradiction to show that the equation
224+ 2mr+2n=0

has no odd roots if m and n are odd.

This proposition is equivalent to one of the form P = @ if we take P to be the statement “m and n are
odd integers”, and @Q to be the statement “there exists no odd integer = such that 2 + 2max + 2n = 0”.
Not-Q is then the statement that there exists an odd integer x such that z? + 2mz + 2n = 0.

To apply the method of proof by contradiction, we suppose P and not-Q are true and look for a contradiction
with known facts.

So let « be an odd integer satisfying
224 2mr+2n=0
and suppose both m and n are odd. Then

r? = —2(mx + n)

The right hand side, being a multiple of 2, is clearly even. So 22 is even. On the other hand, z is supposed to
be odd. In your last homework assignment you proved (hopefully) that if = is odd, then 22 is necessarily odd.
We have thus arrived at a contradiction with a known fact. Since P and not-@) can not be simultaneously
true, we have

“P is true” = “not-(Q is false”

or
P = Q

1. The Contrapositive Method

The contrapositive method is a variation of the proof by contradiction method in which one tries to
work forward from the hypothesis “not-Q is true” to conclude that “not-P” is true. For if we can show that

not-¢Q = not-P

then we can conclude that
P = Q

The justification for conclusion runs as follows:
() “P is true” = “not-P is false”
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2. PROOF BY CONSTRUCTION 12

(44) “not-P is false” and “not-¢) = not-P is true” = “not-Q is false”
(#41) “not-Q is false” = “Q is true”
EXAMPLE 3.2. Let’s use the contrapositive method to prove

PROPOSITION 3.3. If n is an integer and n? is an odd integer, then n is odd.

proof.

In this proposition the hypothesis P is “n is an integer and n? is an odd integer” and the conclusion @
we’re trying to reach is “n is odd”. So
not-QQ = n is not even

not-P = nis not an integer or n? is not an odd integer

In figuring out not-P we used the rule that not-(A and B) = not-A or not-B. However, this makes our new
conclusion more complicated then necessary.

Let’s instead first rephrase the statement we're trying to prove as

2

Suppose n is an integer. Then n“ is an odd integer implies n is odd

or diagramatically
nezZ = (n2 isodd = nisodd)
But then the contrapositive of the propositional statement in parentheses is
nis not-odd = n? is not-odd
or
niseven = n?iseven

Since the contrapositive is true (we’ve shown this in an earlier example), the original propositional statement
is true.

Here is the entire proof. The statement
“If n is an integer and n? is an odd integer, then n is odd”
is equivalent to
'mel = (n2 isodd = nis odd) 7

which is equivalent to
'mel = (n is not-odd = n?is not odd) ”

which is equivalent to

"nel = (n iseven = n?is even) ?

which has already been demonstrated to be true. So the original proposition is true |

2. Proof by Construction

Another method of proof is particularly useful for proving statements involving existential quantifiers (e.g.,
“there exists at least one ...”).

This method works as follows:

In order to prove a statement of the form

“If such and such, then there exists an object such that so and so.”

“

it suffices to construct (guess, produce, devise an algorithm to produce, etc.), using the hypothesis “ such

and such”, the object in the conclusion and show that it satisfies the properties “ so and so”.
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ExaMPLE 3.4. Prove that if a < b, then there exists a real number ¢ such that

a<c<b
Proof. Set
C_a+b
2
Then
C_a_a—l—b—2a_b—a>0
N 2 2
since b > a; and
2b—a—b b—a
b—c= = >0

2 2
for the same reason. Thus, we have constructed a number ¢ with the desired properties.

EXAMPLE 3.5.

PROPOSITION 3.6. Ifa,b,c,d,e and f are real numbers such that

(ad—bc) #0
then the two equations

ax+by = e

cx+dy = f

can be solved for x and y.

proof. Our hypothesis is that a, b, ¢,d, e and f are real numbers such that
(ad —bc) #0
and the conclusion we are trying to prove is that there exists real numbers x and y such that
axr+by = e ,
ce+dy = f
Our basic plan is to apply a little high school algebra to construct a solution of the systems of equations.
Thus, we might solve the first equation for y and then substitute the resulting expression for y into the
second equation and solve for z. But note at that first step we end up with

(3.1)

_e—ax
Y=

which requires an additional hypothesis, b # 0, which is distinct from our original hypothesis ad — bc # 0.
This being the case, to get an air-tight proof, we’ll need to handle the two cases b # 0 or b = 0 separately,

Case 1. b # 0. In this case, we can solve the first equation of y, to get

76*@5.5
Y=

Substituting this into the second equation we get

cx+d (e—bax> = f.

Multiplying this last equation by —b we get
—cbx — de + adx = — fb

or
(ad — be) x = de — fb
Since by hypothesis, ad — bc # 0, we can divide both sides by ad — be to get
de — fb
" ad—be
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and then substituting this expression for z into our expression for y we get
_af—ce
v= ad — be
and so we arrive at a solution.

Case 2. If b = 0. In this situation, our equations specialize to
ar = e
bx+dy = f

Now, also in this case, it must be that neither a or d equals zero; otherwise we will violate our hypothesis
that ad — bc # 0. We can therefore solve the first equation for x

e
r=-
a
Substituting this expression for x into the second equation, we get
e
dy=f—-—
a
Since d # 0 in this case, we can obtain
=a(-7)
v= d a

and we have a solution for this case.

Since Case 1 and Case 2 exhaust all possibilities (for b), our proof is complete O



