
LECTURE 3

Methods of Proof, cont’d

Last time we discussed some of the basic techniques for proving propositions. We began with the notion of
a direct proof and one of its implementations, the forward-backward method. Then we discussed an
alternative to the direct proof, proof by contradiction.

I would like to begin today’s lecture with another example of proof by contradiction.

Example 3.1. Use the method of proof by contradiction to show that the equation

x2 + 2mx + 2n = 0

has no odd roots if m and n are odd.

This proposition is equivalent to one of the form P ⇒ Q if we take P to be the statement “m and n are
odd integers”, and Q to be the statement “there exists no odd integer x such that x2 + 2mx + 2n = 0”.
Not-Q is then the statement that there exists an odd integer x such that x2 + 2mx + 2n = 0.

To apply the method of proof by contradiction, we suppose P and not-Q are true and look for a contradiction
with known facts.

So let x be an odd integer satisfying

x2 + 2mx + 2n = 0

and suppose both m and n are odd. Then

x2 = −2(mx + n) .

The right hand side, being a multiple of 2, is clearly even. So x2 is even. On the other hand, x is supposed to
be odd. In your last homework assignment you proved (hopefully) that if x is odd, then x2 is necessarily odd.
We have thus arrived at a contradiction with a known fact. Since P and not-Q can not be simultaneously
true, we have

“P is true” ⇒ “not-Q is false”

or

P ⇒ Q .

�

1. The Contrapositive Method

The contrapositive method is a variation of the proof by contradiction method in which one tries to
work forward from the hypothesis “not-Q is true” to conclude that “not-P” is true. For if we can show that

not-Q ⇒ not-P

then we can conclude that

P ⇒ Q .

The justification for conclusion runs as follows:

(i) “P is true” ⇒ “not-P is false”
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2. PROOF BY CONSTRUCTION 12

(ii) “not-P is false” and “not-Q ⇒ not-P is true” ⇒ “not-Q is false”

(iii) “not-Q is false” ⇒ “Q is true”

Example 3.2. Let’s use the contrapositive method to prove

Proposition 3.3. If n is an integer and n2 is an odd integer, then n is odd.

proof.

In this proposition the hypothesis P is “n is an integer and n2 is an odd integer” and the conclusion Q
we’re trying to reach is “n is odd”. So

not-Q = n is not even

not-P = n is not an integer or n2 is not an odd integer

In figuring out not-P we used the rule that not-(A and B) = not-A or not-B. However, this makes our new
conclusion more complicated then necessary.

Let’s instead first rephrase the statement we’re trying to prove as

Suppose n is an integer. Then n2 is an odd integer implies n is odd

or diagramatically
n ∈ Z ⇒

(
n2 is odd ⇒ n is odd

)
But then the contrapositive of the propositional statement in parentheses is

n is not-odd ⇒ n2 is not-odd

or
n is even ⇒ n2 is even

Since the contrapositive is true (we’ve shown this in an earlier example), the original propositional statement
is true.

Here is the entire proof. The statement

“If n is an integer and n2 is an odd integer, then n is odd”

is equivalent to
”n ∈ Z ⇒

(
n2 is odd ⇒ n is odd

)
”

which is equivalent to
”n ∈ Z ⇒

(
n is not-odd ⇒ n2 is not odd

)
”

which is equivalent to
”n ∈ Z ⇒

(
n is even ⇒ n2 is even

)
”

which has already been demonstrated to be true. So the original proposition is true �

2. Proof by Construction

Another method of proof is particularly useful for proving statements involving existential quantifiers (e.g.,
“there exists at least one . . .”).

This method works as follows:

In order to prove a statement of the form

“If such and such, then there exists an object such that so and so.”

it suffices to construct (guess, produce, devise an algorithm to produce, etc.), using the hypothesis “ such
and such”, the object in the conclusion and show that it satisfies the properties “ so and so”.
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Example 3.4. Prove that if a < b, then there exists a real number c such that

a < c < b .

Proof. Set

c =
a + b

2
.

Then

c− a =
a + b− 2a

2
=

b− a

2
> 0

since b > a; and

b− c =
2b− a− b

2
=

b− a

2
> 0

for the same reason. Thus, we have constructed a number c with the desired properties.

Example 3.5.

Proposition 3.6. If a, b, c, d, e and f are real numbers such that

(ad− bc) 6= 0 ,

then the two equations

ax + by = e

cx + dy = f

can be solved for x and y.

proof . Our hypothesis is that a, b, c, d, e and f are real numbers such that

(ad− bc) 6= 0 ,

and the conclusion we are trying to prove is that there exists real numbers x and y such that

(3.1)
ax + by = e ,
cx + dy = f .

Our basic plan is to apply a little high school algebra to construct a solution of the systems of equations.
Thus, we might solve the first equation for y and then substitute the resulting expression for y into the
second equation and solve for x. But note at that first step we end up with

y =
e− ax

b

which requires an additional hypothesis, b 6= 0, which is distinct from our original hypothesis ad − bc 6= 0.
This being the case, to get an air-tight proof, we’ll need to handle the two cases b 6= 0 or b = 0 separately,

Case 1. b 6= 0. In this case, we can solve the first equation of y, to get

y =
e− ax

b

Substituting this into the second equation we get

cx + d

(
e− ax

b

)
= f.

Multiplying this last equation by −b we get

−cbx− de + adx = −fb
or

(ad− bc)x = de− fb

Since by hypothesis, ad− bc 6= 0, we can divide both sides by ad− bc to get

x =
de− fb

ad− bc
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and then substituting this expression for x into our expression for y we get

y =
af − ce

ad− bc

and so we arrive at a solution.

Case 2. If b = 0. In this situation, our equations specialize to

ax = e

bx + dy = f

Now, also in this case, it must be that neither a or d equals zero; otherwise we will violate our hypothesis
that ad− bc 6= 0̇. We can therefore solve the first equation for x

x =
e

a
,

Substituting this expression for x into the second equation, we get

dy = f − e

a
Since d 6= 0 in this case, we can obtain

y =
1

d

(
f − e

a

)
and we have a solution for this case.

Since Case 1 and Case 2 exhaust all possibilities (for b), our proof is complete �


