
LECTURE 1

Logic and Proofs

The primary purpose of this course is to introduce you, most of whom are mathematics majors, to the most
fundamental skills of a mathematician; the ability to read, write, and understand proofs. This is a course
where proofs matter more than the material covered.

That said, I should also stress that this is not supposed to be a killer course. Yes, we are going to be
rigorous and meticulous; but we will take our time to cover the material. And while we will be often dealing
in abstractions; we shall be doing so to develop concrete ways of handling far reaching concepts.

1. Basic Logic

1.1. Statements. In order to get our bearings, let us begin with a discussion of logic and proof. Much
of this discussion will appear as common sense. However, not all common sense is logical, nor does every
common sensical argument constitute a proof. For this reason, we must delineate from the start, exactly
what constitutes a logical argument.

Definition 1.1. A statement is a declarative sentence that is either true or false.

Each of the following sentences is a statement:

Every square has four sides.

π is a rational number.

Orange is the best color.

Note that in the last example is a statement, even though one has no means of verifying its truth or falsity
(except perhaps by clarifying what one means by “the best”).

Let us now lay out the means by which we manipulate statements in a logical manner.

1.2. Compound Statements. Suppose P and Q are statements. Then we can form new statements
by connecting the two statements by the connectives “and”and “or”.

If P and Q are statements, then “P and Q” is a true
statement only if P and Q are both true; otherwise

“P and Q” is false.

Thus,
“P and Q”is true ⇐ {P is true and Q is true.

“P and Q”is false ⇐

 P is true and Q is false.
Q is true and P is false.
Q is false and P is false.
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If P and Q are statements, then “P or Q” is a true
statement if P is true, Q is true, or “P and Q”

is true.

Thus,

“P or Q”is true ⇐

 Q is true and P is true.
P is true and Q is false.
Q is true and P is false.

“P or Q”is false ⇐ {Q is false and P is false.

One must be a little careful here, because the logical connective “or” is a particular usage of the English
conjuction “or”. For in English the conjunction “or” can be used in such a way as to exclude one or the
other of two possibilities:

The result of a coin toss is either head or tails.

Or it can be used to include two possibilities:

I need 6 or 7 dollars.

In mathematics, one always uses the logical connective “or”in the inclusive sense. So there are always three
possibilities if “P or Q”is a true mathematical statement:

“P or Q”is true ⇐

 P is true and Q is true.
P is true and Q is false.
Q is true and P is false.

Occassionally we’ll run into composite statements that have both “or” and “and” conjunctives. In such
cases we have to be careful how we associate the conjunctives

(S1 and S2) or S3 6= S1 and (S2 or S3)

To see what can happen consider the following table

S1 S2 S3 (S1 and S2) (S1 and S3) S1 and (S2 or S3) (S1 and S2) or (S1 and S3)
F F F F F F F
F F T F F F F
F T F F F F F
F T T F F F F
T F F F F F F
T F T F T T T
T T F T F T T
T T T T F T T

Here we have simply listed all the possibilities for the truth or falsity of three statements S1, S2, and S3 and
computed the composite statements “S1 and (S2 or S3) ” and “(S1 and S2) or (S1 and S3)”. Evidently,

“S1 and (S2 or S3) ” ⇐⇒ “ (S1 and S2) or (S1 and S3) ”

Similarly, the table
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S1 S2 S3 (S2 and S3) (S1 or S2) (S1 or S3) S1 or (S2 and S3) (S1 or S2) and (S1 or S3)
F F F F F F F F
F F T F F T F F
F T F F T F F F
F T T T T T T T
T F F F T T T T
T F T F T T T T
T T F F T T T T
T T T T T T T T

shows
“S1 or (S2 and S3) ” ⇐⇒ “ (S1 or S2) and (S1 or S3) ”

In summary,

Lemma 1.2. Let S1, S2 and S3 be logical statements. Then

“S1 and (S2 or S3) ” ⇐⇒ “ (S1 and S2) or (S1 and S3) ”

and
“S1 or (S2 and S3) ” ⇐⇒ “ (S1 or S2) and (S1 or S3) ”

Remark 1.3. Note the similarity of these rules with the way multiplication distributes over addition:

a ∗ (b+ c) = (a ∗ b) + (a ∗ c)
You can thus think of the first conclusion of Lemma 1.2 as saying the conjuctive “and”distributes over the
conjuctive “or”and that the second conclusion is equivalent to saying that the conjuctive “and”distributes
over the conjuctive “or”.

1.3. Universal Quantifiers. The following statements contain universal quantifiers.

For all real numbers x, x2 6= −1.
All triangles have three sides.

For each real number a, a2 ≥ 0.

Notice that in each of the statements above, a property is attributed to all members of a set; this is what
we mean by a universal quantifier. We’ll use the short hand

every a ∈ A is B
to indicate the basic template for a statement with a universal qualifier (even though we have a variety of
ways of phrasing such statements).

1.4. Existential Quantifiers. The following statements contain existential quantifiers

Some integers are prime.

There exists a integer between 7.5 and 9.1.

There exists an irrational real number.

Notice that in each of these statements a property is attributed to at least one element of a set; this is
what one means by a existential quantifier. We’ll use the short hand

at least one a ∈ A is B
to indicate the basic template for a statement with an existential qualifier (even though we have a variety
of ways of phrasing such statements).



1. BASIC LOGIC 4

1.5. Negation. The negation, not-P , of a statement P is the statement such that not-P is true
exactly when P is false, and not-P is false exactly when P is true.

In most cases you can transform a statement into its negation by inserting a “not”in the appropriate place.

A is B. −→ A is not B.

The negation of compound statements works as follows:

The negation of “P and Q” is “not-P or not-Q”.

The negation of “P or Q” is “not-P and not-Q”.

The negation of universal and existential quantifiers works as follows:

The negation of a statement with a universal quantifier
is a statement with an existential quantifier.

The negation of a statement with an existential quantifier
is a statement with a universal quantifier.

For example, the negation of the statement

“All crayons are blue′′,

which has a universal quantifier is
“Not all crayons are blue”

which if true, would of course imply that at least one crayon was not blue; i.e. a statement with an existential
quantifier.

Note: Be careful with negatitng statements that seem to use an existential qualifier, but without restricting
members of a set to satisfy a condition. For example, the statement of “there exist infinitely many primes”
is not of the form “There exists at least one A that is B ; and its negation “there does not exists an infinite
number of primes”does not involve a universal qualifier.

In summary

A is B negation−−−−−−−−−→ A is not B

A and B negation−−−−−−−−−→ not-A or not-B

A or B negation−−−−−−−−−→ not-A and not-B

every a ∈ A is B negation−−−−−−−−−→ at least one a ∈ A is not-B

at least one a ∈ A is B negation−−−−−−−−−→ every a ∈ A is not-B

1.6. Conditional Statements. In mathematics one deals primarily with conditional statements;
that is to say statements of the form

If P , then Q.

which is written symbolically as
P ⇒ Q .
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Such a statement means that the truth of P guarantees the truth of Q. More explicitly i P ⇒ Q is true if
Q is true whenever P is true. i P ⇒ Q is false if Q can be false when P is true.

The statement P is called the hypothesis, or premise, and the statement Q is called the conclusion. Here
are some examples:

If x and y are integers, then x+ y is an integer.

x 6= 0 ⇒ x2 > 0.

There are several ways of phrasing a conditional statement, all of which mean the same thing:

If P , then Q.

P implies Q.

P is suffi cient for Q.

Q provided that P .

Q whenever P .

1.7. The Contrapositive of a Conditional Statement. The contrapositive of a conditional state-
ment “If P , then Q”is the conditional statement “If not-Q, then not-P”. For example, the contrapositive
of

If x < 6, then x < 8

is
If x is not less than 8, then x is not less than 6

or, equivalently,
If x ≥ 8, then x ≥ 6.

In this example, the truth of the original conditional statement seems to guarantee the truth of its contra-
positive. In fact,

The conditional statement “P ⇒ Q” is equivalent
to its contrapositive “not-Q ⇒ not-P”.

Let’s prove
“ P ⇒ Q”implies “not-Q ⇒ not-P” .

By hypothesis, if P is true, then Q is true. Suppose not-Q is true. Then Q is false. But then P can not be
true, since that would contradict our hypothesis. So not-P must be true.

1.8. The Converse of a Conditional Statement. The converse of the conditional statement

P ⇒ Q

is the conditional statement
Q ⇒ P .

It is important to note that the truth of a conditional statement does not imply the truth of its
converse. For example, it is true that

If x is an integer, then x is a real number;

but the converse of this statement

If x is a real number, then x is an integer,

is certainly not true.
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However, there are some situations in which both a conditional statement and its converse are true. For
example, both

If the integer x is even, then the integer x+ 1 is odd
and its converse

If integer x+ 1 is odd, then the integer x is even
are true. We can state this fact more succinctly by saying

The integer x is even if and only if the integer x+ 1 is odd .

More generally, the statement
P if and only if Q

which may be abbreviated
P iff Q

or
P ⇔ Q

means
“P ⇒ Q”and “Q ⇒ P” .

“P if and only if Q” is called a biconditional statement. When “P ⇔ Q” is a true biconditional
statement, P is true exactly when Q is true, and so the statements P and Q can be regarded as equivalent
statements (when inserted in other statements).

Example 1.4. Negate the following statements.

(a) Every polynomial can be factored.
—The negation of this statement would be “not every polynomial can be factored”. Or “There
exists at least one polynomial that cannont be factored”.
But note that one has to be careful about trying to achieve a negation by haphazardly inserting
a “not”in the statement. For example, the negation of “Every polynomial can be factored”
is not ”Every polynomial cannot be factored”.
It might help to remember that the negation of a universal qualifier (like “every”) should
involve an existential qualifier (like “there exists”)

(b) There is at least one solution of f(x) = 0.
—The negation of a statement with an existential qualifier should involve a universal qualifier.
However, the most common sensical way of negating “There is at least one solution of f(x) =
0”might be “There aren’t any solutions of f (x) = 0”. But this last statement is equivalent
to “For all x, f(x) 6= 0”.

(c) x is even and divisible by 3.
—A negation of statement involving the conjuctive “and” should involve the conjuctive “or”.
The negation of “x is even and divisible by 3”is “x is not even or not divisible by 3”.

(d) Bob lives in Tulsa or Oklahoma City.
—A negation of statement involving the conjuctive “or” should involve the conjuctive “and”.
The negation of “Bob lives in Tulsa or Oklahoma City” is “Bob does not live in Tulsa and
Bob does not live in Oklahoma City.”

Example 1.5. Formulate a contrapositive for each of the following conditional statements.

• If x is divisible by 2 then x2 is divisible by 4
—

P = “x is divisible by 2” negation−−−−−−−−−→ not-P = “x is not divisible by 2”

Q = “x2 is divisible by 4” negation−−−−−−−−−→ not-Q = “x2 is not divisible by 4”

and so the contrapositive not-Q ⇒ not-P is

“If x2 is not divisible by 4, then x is not divisible by 2”
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• If x is even and divisible by 3 then x2 is divisible by 4 and 9.
—

P = “x is even and divisible by 3” negation−−−−−−−−−→ not-P = “x is not even or not divisible by 2”

Q = “x2 is divisible by 4 and 9” negation−−−−−−−−−→ not-Q = “x2 is not divisible by 4 or not divisible by 9”

The contrapositive of the original statement is thus

“If x2 is not divisible by 4 or not divisible by 9, then x is not even or not divisible by 2”

• If there exists one solution of f ′ = f , then there are infinitely many solutions.

P = “there is one solution of f ′ = f” negation−−−−−−−−−→ not-P = “there are no solution of f ′ = f”

Q = “there are infinitely many solutions” negation−−−−−−−−−→ not-Q = “there are not infinitely many solutions”

Thus the contrapositive is

“If there are not infinitely many solutions, then there are no solutions of f ′ = f .

Note that in this example, we are using the existential qualifiers “there is/are”in both P and Q,
as well as in their negations. Thus, one doesn’t always have to replace existential qualifiers with
universal qualifiers upon negation. In fact, in this example one has to think a bit how to negate
P in such a way that its negation uses a universal qualifier. Here’s one way:

P = “There exists one function satisfying f ′ = f” negation−−−−−−−−−→ not-P = “Every function satisfies f ′ 6= f .”

We can’t do a similar thing with the statement Q, “there are infinitely many solutions”, because
it is not really a statement about the existence of elements with a particular property that have a
particular property. Rather it is a statement about the size of a certain set (the set of solutions).

The moral of the last example is that often times is better to simply employ your natural mathematical
instincts than try to negate statements by adherring to fixed set of logic rules.


