Math 3613 Homework Problems from Chapter 4

§4.1

4.1.1. Perform the indicated operations in $\mathbb{Z}_6[X]$ and simply your answer.

(a)
$$(3x^4 + 2x^3 - 4x^2 + x - 4) + (4x^3 + x^2 + 4x + 3)$$

(b) $(x+1)^3$

- 4.1.2. Which of the following subsets of $\mathbb{R}[x]$ are subrings of $\mathbb{R}[x]$? Justify your answer.
- (a) $S = \{ All polynomials with constant term <math>0_R \}.$
- (b) $S = \{ Alll \text{ polynomials of degree } 2 \}.$
- (c) $S = \{ All \text{ polynomials of degree } \leq k \in \mathbb{N}, \text{ where } 0 < k \}.$
- (d) $S = \{ All polynomials in which odd powers of x have zero coefficients \}.$
- (e) $S = \{ All polynomials in which even powers of x have zero coefficients \}.$
- 4.1.3. List all polynomials of degree 3 in $\mathbb{Z}_2[x]$.

4.1.4. Let F be a field and let f be a non-zero polynomial in F[x]. Show that f is a unit in F[x] if and only if deg f = 0.

$\S4.2$

4.2.1. If $a, b \in F$ and $a \neq b$, show that x + a and x + b are relatively prime in F[x].

4.2.2. Let $f, g \in F[x]$. If $f \mid g$ and $g \mid f$, show that f = cg for some non-zero $c \in F$.

(b) If f and g are monic and $f \mid g$ and $g \mid f$, show that f = g.

4.2.3. Let $f \in F[x]$ and assume $f \mid g$ for every nonconstant $g \in F[x]$. Show that f is a constant polynomial.

4.2.4. Let $f, g \in F[x]$, not both zero, and let d = GCD(f, g). If h is a common divisor of f and g of highest possible degree, then prove that h = cd for some nonzero $c \in F$.

4.2.5. If f is relatively prime to 0_F , what can be said about f.

4.2.6. Let $f, g, h \in F[x]$, with f and g relatively prime. If $f \mid h$ and $g \mid h$, prove that $fg \mid h$.

4.2.7. Let $f, g, h \in F[x]$, with f and g relatively prime. If $h \mid f$, prove that h and g are relatively prime.

4.2.8. Let $f, g, h \in F[x]$, with f and g relatively prime. Prove that the GCD of fh and g is the same as the GCD of h and g.

§4.3

4.3.1 Prove that f and g are associates in F[x] if and only if $f \mid g$ and $g \mid f$.

4.3.2 Prove that f is irreducible in F[x] if and only if its associates are irreducible.

4.3.3. If p and q are nonassociate irreducibles in F[x], prove that p and q are relatively prime.

§4.4

4.4.1. Verify that every element of \mathbb{Z}_3 is a root of $f = x^3 - x \in \mathbb{Z}_3$.

4.4.2. Use the Factor Theorem to show that $f = x^7 - x$ factors in \mathbb{Z}_7 as

$$f = x \left(x - [1]_7 \right) \left(x - [2]_7 \right) \left(x - [3]_7 \right) \left(x - [4]_7 \right) \left(x - [5]_7 \right) \left(x - [6]_7 \right) \quad .$$

4.4.3. If $a \in F$ is a nonzero root of

$$f = c_n x^n + \ldots + c_1 x + c_0 \in F[x] \quad ,$$

show that a^{-1} is a root of

$$g = c_0 x^n + c_1 x^{n-1} + \dots + c_n$$

4.4.4. Prove that $x^2 + 1$ is reducible in $\mathbb{Z}_p[x]$ if and only if there exists integers a and b such that p = a + b and $ab \equiv 1 \pmod{p}$.

4.4.5. Find a polynomial of degree 2 in $\mathbb{Z}_6[x]$ that has four roots in \mathbb{Z}_6 . Does this contradict Corollary 4.13?