Math 3613 Homework Problems from Chapter 4

§4.1

- 4.1.1. Perform the indicated operations in $\mathbb{Z}_6[X]$ and simply your answer.
- (a) $(3x^4 + 2x^3 4x^2 + x 4) + (4x^3 + x^2 + 4x + 3)$

(b)
$$(x+1)^3$$

- 4.1.2. Which of the following subsets of $\mathbb{R}[x]$ are subrings of $\mathbb{R}[x]$? Justify your answer.
- (a) $S = \{ All polynomials with constant term <math>0_R \}.$
- (b) $S = \{ Alll polynomials of degree 2 \}.$
- (c) $S = \{ \text{All polynomials of degree} \le k \in \mathbb{N}, \text{ where } 0 < k \}.$
- (d) $S = \{ All polynomials in which odd powers of x have zero coefficients \}.$
- (e) $S = \{All polynomials in which even powers of x have zero coefficients \}.$
- 4.1.3. List all polynomials of degree 3 in $\mathbb{Z}_2[x]$.

4.1.4. Let F be a field and let f be a non-zero polynomial in F[x]. Show that f is a unit in F[x] if and only if deg f = 0.

§4.2

4.2.1. If $a, b \in F$ and $a \neq b$, show that x + a and x + b are relatively prime in F[x].

- Proof by contradiction.
- 4.2.2. Let $f, g \in F[x]$.
- (a) If $f \mid g$ and $g \mid f$, show that f = cg for some non-zero $c \in F$.
- Observe that $\deg(f) \leq \deg(g)$, $\deg(g) \leq \deg(f)$ and $\deg(f) = \deg(c) + \deg(g)$.
- (b) If f and g are monic and $f \mid g$ and $g \mid f$, show that f = g.
- Show f and g have same leading term to if f = cg then c = 1.

4.2.3. Let $f \in F[x]$ and assume $f \mid g$ for every nonconstant $g \in F[x]$. Show that f is a constant polynomial.

• Show that deg $(f) \leq deg (g)$ for every polynomial g (forcing deg (f) = 0).

4.2.4. Let $f, g \in F[x]$, not both zero, and let d = GCD(f, g). If h is a common divisor of f and g of highest possible degree, then prove that h = cd for some nonzero $c \in F$.

1

• Use uniqueness of GCD and the fact that every nonzero polynomial has a monic associate.

4.2.5. If f is relatively prime to 0_F , what can be said about f.

• Note $CGD(f, 0_F) = 1_F$ is the monic common divisor of greatest possible degree, and every polynomial divides 0_F .

4.2.6. Let $f, g, h \in F[x]$, with f and g relatively prime. If $f \mid h$ and $g \mid h$, prove that $fg \mid h$.

• Write h = qf = rg. Then multiply the relation $1_F = uf + vg$ by h, and then replace ufh with uf(rg) and vg with v(qf) on the right hand side.

4.2.7. Let $f, g, h \in F[x]$, with f and g relatively prime. If $h \mid f$, prove that h and g are relatively prime.

• Write $1_F = uf + vg$ and then replace f by qh, and note that any polynomial that divides h and g must divide 1_F .

4.2.8. Let $f, g, h \in F[x]$, with f and g relatively prime. Prove that the GCD of fh and g is the same as the GCD of h and g.

• Show that the sets of common divisors of f and g is the same as the set of common divisors of fh and g and then conclude since the sets of common divisors are the same, their monic elements of highest degree (the corresponding GCD's) must coincide.

§4.3

4.3.1 Prove that f and g are associates in F[x] if and only if $f \mid g$ and $g \mid f$.

- See problem 4.2.2.
- 4.3.2 Prove that f is irreducible in F[x] if and only if its associates are irreducible.
- Proof by contradiction.

4.3.3. If p and q are nonassociate irreducibles in F[x], prove that p and q are relatively prime.

• List possible monic divisors of p and q and compare.

§4.4

4.4.1. Verify that every element of \mathbb{Z}_3 is a root of $f = x^3 - x \in \mathbb{Z}_3$.

4.4.2. Use the Factor Theorem to show that $f = x^7 - x$ factors in \mathbb{Z}_7 as

$$f = x \left(x - [1]_7 \right) \left(x - [2]_7 \right) \left(x - [3]_7 \right) \left(x - [4]_7 \right) \left(x - [5]_7 \right) \left(x - [6]_7 \right)$$

4.4.3. If $a \in F$ is a nonzero root of

$$f = c_n x^n + \ldots + c_1 x + c_0 \in F[x]$$

show that a^{-1} is a root of

$$g = c_0 x^n + c_1 x^{n-1} + \dots + c_n$$

4.4.4. Prove that $x^2 + 1$ is reducible in $\mathbb{Z}_p[x]$ if and only if there exists integers a and b such that p = a + b and $ab \equiv 1 \pmod{p}$.

• If $x^2 = 1$ is reducible, it must be factorizable in terms of degree 1 polynomials, and, moreover, by Corollary 4.10 it must have a root in \mathbb{Z}_p . (N.B., \mathbb{Z}_p is a field whenever p is prime, as we are assuming here.) Thus, $x^2 + 1$ must factorize as

$$x^2 + 1 = (x - a)q$$

with $a \in \mathbb{Z}_p$ satisfying $a^2 + [1]_p = [0]_p$. It follows easily that the other factor q must be of the form q = x - b. So we have

$$x^{2} + 1 = (x - a)(x - b) = x^{2} + (a + b)x + ab$$

Comparing coefficients on both sides we conclude

$$\begin{array}{rcl} (a+b) & = & \left[0 \right]_p \\ \\ ab & = & \left[1 \right]_p \end{array}$$

4.4.5. Find a polynomial of degree 2 in $\mathbb{Z}_6[x]$ that has four roots in \mathbb{Z}_6 . Does this contradict Corollary 4.13?