Hints to Homework Set 3 (Problems from Chapter 2)

Problems from §2.1

- 2.1.1. Prove that $a \equiv b \pmod{n}$ if and only if a and b leave the same remainder when divided by n.
 - \implies By Division Algorithm $a = nq_1 + r_1$ with $0 \le r_1 < n$, and $b = nq_2 + r_2$ with $0 \le r_2 < n$. By hypothesis

 $kn = a - b = (q_1 - q_2) n - r_1 - r_2 \implies r_1 - r_2 = n (k - q_1 + q_2)$ $\implies n \text{ divides } (r_1 - r_2) \implies r_1 - r_2 = 0 \text{ because } 0 \le |r_1 - r_2| < n$

• \Leftarrow easy (just apply Div. Alg. as above using the hypothesis $r_1 = r_2$)

2.1.2. If $a \in \mathbb{Z}$, prove that a^2 is not congruent to 2 modulo 4 or to 3 modulo 4.

• Try case by case analysis

2.1.3. If a, b are integers such that $a \equiv b \pmod{p}$ for every positive prime p, prove that a = b.

• Choose a prime p > |a - b| Then

 $a \equiv b \pmod{p} \implies p \mid (a-b) \implies a-b=0 \text{ since } 0 \leq |a-b| < p$

2.1.4. Which of the following congruences have solutions: (a) $x^2 \equiv 1 \pmod{3}$

• case by case analysis (b) $x^2 \equiv 2 \pmod{7}$ (c) $x^2 \equiv 3 \pmod{11}$

2.1.5. If $[a]_n = [b]_n$ in \mathbb{Z}_n , prove that GCD(a, n) = GCD(b, n).

• If $[a]_n = [b_n]$ then

 $a \equiv b \pmod{n} \implies a-b=kn \implies a=kn+b$

So any integer that divides both b and n divides a. Similary, b = a - kn implies any integer dividing a and b divides b

 $GCD(a, n) = \max \{ \text{common divisors of } a \text{ and } n \} \\ = \max \{ \text{commom divisors of } b \text{ and } n \} = CGD(b, n)$

2.1.6. If GCD(a, n) = 1, prove that there is an integer b such that $ab = 1 \pmod{n}$.

• Proved in class

2.1.7. Prove that if $p \ge 5$ and p is prime, then either $[p]_6 = [1]_6$ or $[p]_6 = [5]_6$.

Problems from §2.2

2.2.1. Write out the addition and multiplication tables for \mathbb{Z}_4 .

2.2.2. Prove or disprove: If ab = 0 in \mathbb{Z}_n , then a = 0 or b = 0.

• Find a counter-example

2.2.3. Prove that if p is prime then the only solutions of $x^2 + x = [0]_p$ in \mathbb{Z}_p are 0 and p - 1.

$$[0]_p = x\left(x+1\right)$$

Now apply Theorem 2.8(3), to conclude either $x = [0]_p$ or $x + [1]_p = [0]_p$

2.2.4. Find all a in \mathbb{Z}_5 for which the equation ax = 1 has a solution.

2.2.5. Prove that there is no ordering \prec of \mathbb{Z}_n such that

(i) if $a \prec b$, and $b \prec c$, then $a \prec c$;

(*ii*) if $a \prec b$, then $a + c \prec b + c$ for every $c \in \mathbb{Z}_n$.

Problems from §2.3

2.3.1 If n is composite, prove that there exists $a, b \in \mathbb{Z}_n$ such that $a \neq [0]$ and $b \neq [0]$ but ab = [0].

• If n is composite, n = ab with 1 < a, b < n. But then $[a]_n \neq [0]_n, [b]_n \neq [0]_n$ but $[a]_n [b]_n = [ab]_n = [n]_n = [0]_n$.

2.3.2 Let p be prime and assume that $a \neq 0$ in \mathbb{Z}_p . Prove that for any $b \in \mathbb{Z}_p$, the equation ax = b has a solution.

• By Theorem 2.8 (2), there is a solution $[c]_p$ of $[a]_p x = [1]_p$. Multiply both sides of $[a]_p [c]_p = [1]_p$ by $[b]_p$ to see that $[c]_p [b]_p$ is a solution of $[a]_p x = [b]_p$.

2.3.3. Let $a \neq [0]$ in \mathbb{Z}_n . Prove that ax = [0] has a nonzero solution in \mathbb{Z}_n if and only if ax = [1] has no solution

• \Longrightarrow Let $[c]_n$ be a non-zero solution of $[a]_n x = [0]_n$. and let $[b]_n$ be a solution of $[1]_n = [a]_n x$. Multiply the last equation by $[c]_n$

 $[c]_n = [c]_n [1]_n = [c]_n ([a]_n [b]_n) = ([c]_n [a]_n) [b]_n = [0]_n [b]_n = [0]_n$

which is a contradiction with the hypothesis. \Leftarrow Similiar.

2.3.4. Solve the following equations.

(a) 12x = 2 in \mathbb{Z}_{19} .

- (b) 7x = 2 in \mathbb{Z}_{24} .
- (c) 31x = 1 in \mathbb{Z}_{50} .
- (d) 34x = 1 in \mathbb{Z}_{97} .