Hints to Homework Set 2

(Homework Problems from Chapter 1)

Problems from Section 1.1.

1.1.1. Let n be an integer. Prove that a and c leave the same remainder when divided by n if and only if a - c = nk for some $k \in \mathbb{Z}$.

• \implies Apply Division Algorithm to a and c

$$a = q_1 n + r$$
$$c = q_2 n + r$$

and subtract.

• \Leftarrow Suppose a - c = nk. The Division algorithm says we can find integers q_1, r_1, q_2, r_2 such that

$$a = q_1 n + r_1 \quad \text{with } 0 \le r_1 < n$$

$$c = q_2 n + r_2 \quad \text{with } 0 < r_2 < n$$

We thus have

$$nk = a - c = q_1n + r_1 - (q_2n + r_2) = n(q_1 - q_2) + r_1 - r_2$$

or

$$r_1 - r_2 = (k - q_1 - q_2) \, n$$

Thus, $n | (r_1 - r_2)$. Now note that $0 \le |r_1 - r_2| < n$ (this follows from $0 \le r_1 < n$ and $0 \le r_2 < n$). But the only non-negative integer smaller than n that is divisible by n is 0. So we must have $r_1 - r_2 = 0 \implies r_1 = r_2$.

1.1.2, Let a and c be integers with $c \neq 0$. Then there exist unique integers q and r such that

$$\begin{array}{ll} (i) & a = cq + r \\ (ii) & 0 \leq r < |c| & . \end{array}$$

• If c > 0, then this is just the Division Algorithm theorem. If c < 0, then the Division Algorithm theorem can be applied to -c = |c|.

$$\exists ! q, r \in \mathbb{Z} \quad s.t. \quad a = |c|q + r \quad \text{with } 0 \le r < |c|$$

Now write

$$a = (-c)\left(-q\right) + r$$

1.1.3. Prove that the square of any integer a is either of the form 3k or of the form 3k + 1 for some integer k.

- There possibilities for n can be split into three subcases.
 - -n = 3q
 - -n = 3q + 1-n = 3q + 2
- Examine the form of n^2 in each of these cases.

1.1.4. Prove that the cube of any integer has exactly one of the forms 9k, 9k + 1, or 9k + 8.

• Use the same technique as the preceding problem.

Problems from Section 1.2

1.2.1.

- (a) Prove that if $a \mid b$ and $a \mid c$ then $a \mid (b+c)$.
 - Simply write b = as and c = at and consider the sum b + c = as + at
- (b) Prove that if $a \mid b$ and $a \mid c$, then $a \mid (br + ct)$ for any $r, t \in \mathbb{Z}$.

- Use same technique as above
- 1.2.2. Prove or disprove that if $a \mid (b+c)$, then $a \mid b$ or $a \mid c$.
 - Find a counter-example

1.2.3. Prove that if $r \in \mathbb{Z}$ is a non-zero solution of $x^2 + ax + b = 0$ (where $a, b \in \mathbb{Z}$), then $r \mid b$.

- Just note that if r satisfies $x^2 + ax + b = 0$, then $b = -r^2 ar$
- 1.2.4. Prove that GCD(a, a + b) = d if and only if GCD(a, b) = d.
 - Show that the sets

 $S = \{ \text{common divisors of } a \text{ and } a + b \}$ $T = \{ \text{common divisors of } a \text{ and } b \}$

coincide.

1.2.5. Prove that if GCD(a, c) = 1 and GCD(b, c) = 1, then GCD(ab, c) = 1.

• Use the Theorem stating GCD(a,c) = ua + vc for some $u, v \in \mathbb{Z}$ to conclude that there exists $u, v \in \mathbb{Z}$ such that

 $1 = ua + vc \implies b = bua + bvc = (ba) a + (bv) c$

and so anything the divides both (ba) and c will divide b. So the greatest common divisor of ba and c must be less than or equal to the greatest common divisor of b and c.

1.2.6.

(a) Prove that if $a, b, u, v \in \mathbb{Z}$ are such that au + bv = 1, then GCD(a, b) = 1.

Suppose a, b have a common divisor t > 1. Then

$$1 = au + bv = (xt) u + (yt) v = t (xu + yv)$$

But then t|1 and $|t| > 1 \Rightarrow contradiction!$

(b) Show by example that if au + bv = d > 0, then GCD(a, b) need not be d.

Problems from Section 1.3

1.3.1. Let p be an integer other than $0, \pm 1$. Prove that p is prime if and only if for each $a \in \mathbb{Z}$, either GCD(a, p) = 1 or $p \mid a$.

- \implies If p is prime then since its only divisors are $\{-1, -|p|, +1, |p|\}$ its greatest common divisor with any number must be either 1 or |p|. So either GCD(a, p) = 1, or GCD(a, p) = |p|. In the latter case, |p| is a divisor of a, hence so is p.
- \Leftarrow Suppose $p \neq 0, \pm 1$ has the property that for any $a \in \mathbb{Z}$ either GCD(a, p) = 1 or p|a. Suppose p has a non-trivial factorization

 $p = rs \quad , \quad 1 < |r| \, |s| < |p|$

Then since $r \in \mathbb{Z}$, either 1 = GCD(r, p) = r or p|r which requires $|p| \le |r|$.

1.3.2 Let p be an integer other than $0, \pm 1$ with this property: Whenever b and c are integers such that $p \mid bc$, then $p \mid c$ or $p \mid b$. Prove that p is prime.

• Suppose p has a non-trivial factorization p = rs and note the contradiction that arises since $p|p \implies p|rs$ (which will be similar to the second part of Problem 1.3.1).

1.3.3. Prove that if every integer integer n > 1 can be written in one and only one way in the form

 $n = p_1 p_2 \cdots p_r$ where the p_i are positive primes such that $p_1 \leq p_2 \leq \cdots \leq p_r$.

1.3.4. Prove that if p is prime and $p \mid a^n$, then $p^n \mid a^n$.

1.3.5.

(a) Prove that there exist no nonzero integers a, b such that $a^2 = 2b^2$.

- Show that the two sides of $a^2 = 2b^2$ can not have the same number of prime factors, and so they can't be equal.
- (b) Prove that $\sqrt{2}$ is irrational.
 - If

$$\sqrt{2} = \frac{a}{b} \qquad , \quad a, b \in \mathbb{Z}$$

then

$$a^2 = 2b^2$$

and apply Part (a) to furnish a contradiction.