
Hints to Homework Set 2
(Homework Problems from Chapter 1)

Problems from Section 1.1.

1.1.1. Let n be an integer. Prove that a and c leave the same remainder when divided by n if and only if
a− c = nk for some k ∈ Z.

• =⇒ Apply Division Algorithm to a and c

a = q1n + r

c = q2n + r

and subtract.
• ⇐= Suppose a− c = nk. The Division algorithm says we can find integers q1, r1, q2, r2 such that

a = q1n + r1 with 0 ≤ r1 < n

c = q2n + r2 with 0 ≤ r2 < n

We thus have

nk = a− c = q1n + r1 − (q2n + r2) = n (q1 − q2) + r1 − r2

or
r1 − r2 = (k − q1 − q2) n

Thus, n| (r1 − r2). Now note that 0 ≤ |r1 − r2| < n (this follows from 0 ≤ r1 < n and 0 ≤ r2 < n).
But the only non-negative integer smaller than n that is divisible by n is 0. So we must have
r1 − r2 = 0 =⇒ r1 = r2.

1.1.2, Let a and c be integers with c 6= 0. Then there exist unique integers q and r such that

(i) a = cq + r

(ii) 0 ≤ r < |c| .

• If c > 0, then this is just the Division Algorithm theorem. If c < 0, then the Division Algorithm
theorem can be applied to −c = |c|.

∃! q, r ∈ Z s.t. a = |c| q + r with 0 ≤ r < |c|
Now write

a = (−c) (−q) + r

1.1.3. Prove that the square of any integer a is either of the form 3k or of the form 3k + 1 for some integer
k.

• There possibilities for n can be split into three subcases.
– n = 3q
– n = 3q + 1
– n = 3q + 2

• Examine the form of n2 in each of these cases.

1.1.4. Prove that the cube of any integer has exactly one of the forms 9k, 9k + 1, or 9k + 8.

• Use the same technique as the preceding problem.

Problems from Section 1.2

1.2.1.
(a) Prove that if a | b and a | c then a | (b + c).

• Simply write b = as and c = at and consider the sum b + c = as + at

(b) Prove that if a | b and a | c, then a | (br + ct) for any r, t ∈ Z.
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• Use same technique as above

1.2.2. Prove or disprove that if a | (b + c), then a | b or a | c.

• Find a counter-example

1.2.3. Prove that if r ∈ Z is a non-zero solution of x2 + ax + b = 0 (where a, b ∈ Z), then r | b.

• Just note that if r satifies x2 + ax + b = 0, then b = −r2 − ar

1.2.4. Prove that GCD(a, a + b) = d if and only if GCD(a, b) = d.

• Show that the sets

S = {common divisors of a and a + b }
T = {common divisors of a and b }

coincide.

1.2.5. Prove that if GCD(a, c) = 1 and GCD(b, c) = 1, then GCD(ab, c) = 1.

• Use the Theorem stating GCD(a, c) = ua + vc for some u, v ∈ Z to conclude that there exists
u, v ∈ Z such that

1 = ua + vc =⇒ b = bua + bvc = (ba) a + (bv) c

and so anything the divides both (ba) and c will divide b. So the greatest common divisor of ba
and c must be less than or equal to the greatest common divisor of b and c. .

1.2.6.

(a) Prove that if a, b, u, v ∈ Z are such that au + bv = 1, then GCD(a, b) = 1.

Suppose a, b have a common divisor t > 1. Then

1 = au + bv = (xt) u + (yt) v = t (xu + yv)

But then t|1 and |t| > 1 ⇒ contradiction!

(b) Show by example that if au + bv = d > 0, then GCD(a, b) need not be d.

Problems from Section 1.3

1.3.1. Let p be an integer other than 0,±1. Prove that p is prime if and only if for each a ∈ Z, either
GCD(a, p) = 1 or p | a.

• =⇒ If p is prime then since its only divisors are {−1,− |p| , +1, |p|} its greatest common divisor
with any number must be either 1 or |p|. So either GCD (a, p) = 1, or GCD (a, p) = |p|. In the
latter case, |p| is a divisor of a, hence so is p.

• ⇐= Suppose p 6= 0,±1 has the property that for any a ∈ Z either GCD (a, p) = 1 or p|a. Suppose
p has a non-trivial factorization

p = rs , 1 < |r| |s| < |p|
Then since r ∈ Z, either 1 = GCD (r, p) = r or p|r which requires |p| ≤ |r|.

1.3.2 Let p be an integer other than 0,±1 with this property: Whenever b and c are integers such that p | bc,
then p | c or p | b. Prove that p is prime.

• Suppose p has a non-trivial factorization p = rs and note the contradiction that arises since
p|p =⇒ p|rs (which will be similar to the second part of Problem 1.3.1).
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1.3.3. Prove that if every integer integer n > 1 can be written in one and only one way in the form

n = p1p2 · · · pr

where the pi are positive primes such that p1 ≤ p2 ≤ · · · ≤ pr.

1.3.4. Prove that if p is prime and p | an , then pn | an.

1.3.5.
(a) Prove that there exist no nonzero integers a, b such that a2 = 2b2.

• Show that the two sides of a2 = 2b2 can not have the same number of prime factors, and so they
can’t be equal.

(b) Prove that
√

2 is irrational.

• If √
2 =

a

b
, a, b ∈ Z

then
a2 = 2b2

and apply Part (a) to furnish a contradiction.


