Math 3013
Solutions to Problem Set &

1. Find the characteristic polynomial, the real eigenvalues, and the corresponding eigenvectors for the
following matrices.

(a) A = { —710 —58]

e The characteristic polynomial is

PO =det(A-A)=| & D (TN (80— (5) (-10) = M+ A 6= (A +3) (A 2)
The eigenvalues of A correspond to the roots of P(A\) = 0; so we have two eigenvalues A\; = —3 and

Ay = 2.
The eigenspace corresponding to the eigenvalue A\; = —3 is the solution set of (A — (—=3)I)x = 0;
i.e., the null space of the matrix

(743 5 [T 10 5 Ry — iRy 21
A(?’)I{ ~10 _8_5_3}{—10 —5} Ry — Ry — Ry 00

The null space of the last matrix is the solution set of

221 + 22 =0 . 1 _ —%{'CQ _%
0=0 = Cﬂlf*?lfz = X= 7 € span 1

Thus, the eigenvectors corresponding to the eigenvalue \; = —3 are thus of the form
_1
vlzr{ 12 } , reR-{0}

The eigenspace corresponding to the eigenvalue Ao = 2 is the solution set of (A — (2)I)x = 0;
i.e., the null space of the matrix

B 7_9 5 B 5 5 R1—>%R1 11
A-(3)I=1 4, _8_2}—[_10 —10} Ry = Ry + 2Ry [0 0}

The null space of the last matrix is the solution set of

z1+x9 =0 _ _ —I9 —1
0= 0 = r=-—29 = X—[ . ]ESp(m({ 1 })

Thus, the eigenvectors corresponding to the eigenvalue Ao = 2 are thus of the form

vzzr[ ‘” . reR—{0}

ma=| 1|

e The characteristic polynomial is

—7T—A -5
P(\) = det (A — \I) = 16 17— ‘ =X —10A—-39=(\—13) (A +3)
The eigenvalues of A correspond to the roots of P(A) = 0; so we have two eigenvalues A; = 13 and

A = =3
The eigenspace corresponding to the eigenvalue A\; = 13 is the solution set of (A — (13)I)x = 0;
i.e., the null space of the matrix
-20 -5 Ry — —iRy 4 1
16 4 Ry — Ry + 2Ry 0 0

1

A—(13)1={




The null space of the last matrix is the solution set of

41 +29 =0 _ 1 - —%132 —%
020 = Ty =~ = x= o € span 1
Thus, the eigenvectors corresponding to the eigenvalue A; = 13 are thus of the form
_1
vlzr{ 14} , reR-{0}

The eigenspace corresponding to the eigenvalue Ay = —3 is the solution set of (A — (=3)I) x = 0;
i.e., the null space of the matrix

o -4 -5 Ry — —R; 4 5
A_(_3)I_{16 20] Ry — Ry + 4Ry [0 0}
The null space of the last matrix is the solution set of
4z 4+ B5re =0 . 5 _ —ggj2 _%
0—0 = TL =~ T2 = x—[ o € span 1
Thus, the eigenvectors corresponding to the eigenvalue Ay = —3 are thus of the form

wzr{ 14} , reR-{0}

e The characteristic polynomial is

1-x =2

PO) =det(A=AD=| " " 7

‘A23/\+4

The roots of this (quadratic) polynomial are given by the quadratic formula:

(3 =V A [) :3im:3iﬂzgim

2(1) 2 272

Thus, we have two complex roots. Lacking a real eigenvalue, the problem ends here.

-1 0 0
(A=]| -4 2 -1
4 0 3

e The characteristic polynomial is

—1-A 0 0

P(A) = det(A—-X)= —4 2—-X -1
4 0 3—A
2—-Xx -1 -4 -1 —4 2-X
= (_1_”’ 0 3-\ ’_((D‘ 13- ’JF(O)‘ 40 ‘
= (-1-M)({(2-MNB=X)-0-0+4+0
= —(A+1H(A=2)(A=3)
We thus have three eigenvalues: A\; = —1, Ay = 2, and A3 = 3.
The eigenspace corresponding to the eigenvalue A\; = —1 correspond to the null space of
0 0 O 1 0 1
A-(-DI=| -4 3 -1 ~s 01 1
4 0 4 0 0 0



i.e. the solution set of

z1+23=0 —3 -1
1 = —T3
o +x3=0 = _ = x=| —x3 | € span -1
0=0 T2 a3 1
Thus, the eigenvectors corresponding to the eigenvalue \; = —1 will be vectors of the form
-1
vi=r| —1 , reR-{0}
1
The eigenspace corresponding to the eigenvalue Ay = 2 correspond to the null space of
-3 0 O 1 0 0
A-2I=| -4 0 -1 ~s 0 0 1
4 0 1 0 0 O
i.e. the solution set of
1 =0 0 0
3 =0 = XxX=| —x2 | € span 1
0=0 0 0
Thus, the eigenvectors corresponding to the eigenvalue A\s = 2 will be vectors of the form
0
vo=r] 1 , reR-{0}
0
The eigenspace corresponding to the eigenvalue A3 = 3 correspond to the null space of
-4 0 0 1 00
A-3)I=| -4 -1 -1 ~s 01 1
4 0 0 0 0 0
i.e. the solution set of
1 =0 0 0
T = 0
To+x3=0 = L = x=| —x3 | € span -1
0=0 e = s 3 1
Thus, the eigenvectors corresponding to the eigenvalue A3 = 3 will be vectors of the form
0
vy=r| —1 , reR-{0}
1
1 0 O
(e)A=| -8 4 =5
8 0 9
e The characteristic polynomial is
1-A 0 0
PA)=det(A-XN)=| -8 4—-Xx -5 |=1-XM)A-XNHO-N
8 0 9— A

So we have three possible eigenvalues : A\; = 1, Ay =4, and A3 = 9. The corresponding eigenvectors
are calculated as in the preceding problems:

Mo =1 = vy=r[-1,-1,1 , reR-{0}

X = 4 = vy=r[0,1,00 , reR-{0}

A3 = 9 = wv3=r[0,-1,1] , reR-{0}



e The characteristic polynomial is

—4—-A 0 0

P(A) =det (A — M) = -7 2—-X2 -1 |=2=-NB=-XN(-4-N
7 0 3—-A
So we have three real eigenvalues: A\; = 2, Ay = 3, and A3 = —4. The corresponding eigenvectors
(calculated as in the preceding problems) are
A= 2 = wvi=r[0,1,0 , reR-{0}
X = 3 = wvy=r[0,1,-1 , reR-{0}
A3 = —4 = V3:r[71,71,1] s T'ER*{O}

2. Find the eigenvalues \; and the corresponding eigenvectors v; for the following linear transformations.
(8) T ([2,]) = [20 — 3y, —3z + 2]

e First we calculate the matrix corresponding to 7'

T ([1,0]) = [2, 3] 2 -3
T(0,1]) =[-3,2] AT‘[—?, 2}

The characteristic polynomial for this matrix is

P()\) =det (Ap — \I) = ‘ 2__3’\ 2__3A ‘ =X —4A-5=A=-5)(\+1)
We thus have two real eigenvalues: A\; =5 and Ay = —1.
The eigenspace corresponding to the eigenvalue A\; = 5 is the null space of
2-5 -3 | | -3 -3 11
-3 2-5| | -3 =3 0 0

which is the solution set of

1 +x2=0 | -1
Fn=0 x_[ N ]Espan({ X D

Hence, the corresponding eigenvectors are of the form

vlzr[ _11} , r€R-{0}

The eigenspace corresponding to the eigenvalue A\; = —1 is the null space of
2-(-1) =3 |_[3 =3] __ |1 -1
-3 2—(-1) | | -3 3 0 0

which is the solution set of

xl—l‘Q:O . i) 1
0 e x| B ewan(] 1))

Hence, the corresponding eigenvectors are of the form

VQZT{H ., reR-{0}

(b) T ([x1, 22, 23]) = [x1 + 23, T2, 71 + T3]



e First we calculate the matrix corresponding to this linear transfomation:

T([].,0,0]):[].,O,” 1 0 1

7(0,1,0]) =[0,1,0) = Ar=[0 1 0
7([0,0,1)) = [1,0, 1 1o 1
The characteristic polynomial for this matrix is
1-A 0 1
P\ = 0 1-A 0 ==-A(-1+M)(A=-2)
1 0 1—A

We thus have three possible eigenvalues: Ay =0, Ay = 1, and Ay = 2.
The eigenspace corresponding to A; = 0 will be the null space of

1-0 0 1 1 0 1] 1 01
0 1-0 0 =(0 10 ~ 01 0
1 0 1-0 1 0 1] 0 0 O
or, equivalently, the solution set of
1 +x3=0 [ —x5
o =0 = xX= 0
0=0 L T3
so the correpsponding eigenvectors will be of the form
-1
vi=r| 0 , reR-{0}
1
The eigenspace corresponding to A; = 1 will be the null space of
1-1 0 1 0 0 1 1 00
0 1-1 0 =[(0 0 0 ~ 0 0 1
1 0 1-1 1 00 0 0 0
or, equivalently, the solution set of
T = 0 0
z3 =0 = X=| T2
0=0 0
so the correpsponding eigenvectors will be of the form
0
vo=r] 1 , reR-{0}
0
The eigenspace corresponding to \; = 2 will be the null space of
1-2 0 1 -1 0 1 1 0 -1
0 1-2 0 = 0 -1 0 ~ 01 0
1 0 1-2 1 0 -1 0 0 0
or, equivalently, the solution set of
1 —x3=0 €3
o =0 = X= 0
0=0 T3
so the correpsponding eigenvectors will be of the form
1
vg=r| 0 , reR-{0}

1
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3. Find the eigenvalues \;, the corresponding eigenvectors v; of the following matrices. Also find an
invertible matrix C and a diagonal matrix D such that D = C"'AC.

wa=|7 5]

e First, we calculate the eigenvalues and eigenvectors of A.

-3-X 4

0=det (A—AD)=| , 5y

‘:)\2—25:(>\—5)(>\+5) = A=5-5

The eigenspace corresponding to the eigenvalue A\; = 5 is the null space of

amon=[ 4 - [0

or, equivalently, the solution space of

21’1 — Ty = 0 N o 21’2 c 2
0=0 X = Lo span 1

So the eigenspace corresponding to the eigenvalue A\; = 5 is the subspace generated by the vector

[}

The eigenspace corresponding to the eigenvalue Ay = —5 is the null space of

a-con=[3 5] - [0 d]

or, equivalently, the solution space of

{E1+2(E2:0 - 7%%2 7% o 1
0=0 = X= { Zs € span 1 = span _9
So the eigenspace corresponding to the eigenvalue Ay = —5 is the subspace generated by the vector

e[

Now that we know the eigenvalues and eigenvectors of A, we can write down the diagonal matrix
D by arranging the eigenvalues of A along the main diagonal of D

STEANIEN

The matrix C can be written down by arranging the eigenvectors of A (in order) as the column
vectors of a 2 X 2 matrix:

c=tilvl=|] L, ]

|

and that D = C7AC (however, this fact is already guaranteed by the way we constructed the
matrices D and C).

One can easily verify that

1
c—lz{ 5

ST N
SIS

wa-[1 1]

e First, we calculate the eigenvalues and eigenvectors of A.

3—A 2

O:det(A—)\I):’I o

‘:)\2—7)\—1—10:()\—2)()\—5) = A=2,5



The eigenspace corresponding to the eigenvalue Ay = 2 is the null space of

acen=[y 5] - [0 0]

or, equivalently, the solution space of

1 + 2172 =0 _ 72172 —2
ot = x=| 2 e (] 7))

So the eigenspace corresponding to the eigenvalue A; = 2 is the subspace generated by the vector

w7

The eigenspace corresponding to the eigenvalue Ay = 5 is the null space of

acon=[ " 4] - [0 5]

or, equivalently, the solution space of

l’lfl’Q:O _ ) 1
7t e[z e (1)

So the eigenspace corresponding to the eigenvalue Ay = 5 is the subspace generated by the vector

o[ 1]

Now that we know the eigenvalues and eigenvectors of A, we can write down the diagonal matrix
D by arranging the eigenvalues of A along the main diagonal of D

o]0 %)= [65)

The matrix C can be written down by arranging the eigenvectors of A (in order) as the column
vectors of a 2 x 2 matrix:
-2 1
C = [Vl ‘ VQ] = |: :|

1 1

(C)A:[—l —85]

e First, we calculate the eigenvalues and eigenvectors of A.

T—X 8

O=det(A—AD)=| """ "o

=N -22-3=0\-3)A+1) = A=3,-1

The eigenspace corresponding to the eigenvalue A\; = 3 is the null space of

S R B )

or, equivalently, the solution space of

1+ 229 =0 . —2x9 -2
it N x_[u }espan<[1 D

So the eigenspace corresponding to the eigenvalue A\; = 3 is the subspace generated by the vector

w7

The eigenspace corresponding to the eigenvalue Ay = —1 is the null space of

ascm=[% ] - o)



or, equivalently, the solution space of

1+ 22 =0 %) -1
ot - x_[m ]ESpanql D

So the eigenspace corresponding to the eigenvalue Ay = —1 is the subspace generated by the vector

=]

Now that we know the eigenvalues and eigenvectors of A, we can write down the diagonal matrix
D by arranging the eigenvalues of A along the main diagonal of D

o=l %=1 %

The matrix C can be written down by arranging the eigenvectors of A (in order) as the column
vectors of a 2 X 2 matrix:

C[v1|vQ]{1_2 1_1]

6 3 -3
A= -2 -1 2
16 8 -7

e The characteristic polynomial of A is
6— A\ 3 -3
Pa(\)=| -2 —1-2x 2 =32 22 - X=X\ +3)(A-1)
16 8 —7T—-A
So A has three distinct real eigenvalues: A\ =0, A = —3 and A3 = 1.
The eigenspace corresponding to the first eigenvector A\; = 0 is the null space of

6 3 -3 1 10
A-0I=| -2 -1 2 s 0 0 1
6 8 =7 0 0 O
is the solution set of
T = —%l‘g
T3 =
0=0
So the corresponding eigenvectors are
_1
2
V1 € span 1
0
The eigenspace corresponding to the eigenvector Ao = —3 is the null space of
9 3 -3 10 —3
A-2I=| -2 2 2 row reduction o1 1
16 8 —4 0 0 O
and so the solution set of
Tr1 = %.733
ro = —%333
3 is free

So the corresponding eigenvectors are

N

Vo € span

[l I 1T



The eigenspace corresponding to the first eigenvector A3 = 1 is the null space of

5 3 -3 1 00
A-DI=| -2 -2 2 row reduction 01 -1
16 8 =8 0 0 0
is the solution set of
xr1 = 0
T2 = T3
x3 is free

So the corresponding eigenvectors are

0
V3 € span 1
1
From the eigenvalues of A we can now form the diagonal matrix D:
A 00 00 0
D=0 X 0 =10 -3 0
0 0 X3 00 1
And from the coresponding eigenvectors we can form the invertible matrix C
440
C=[vi|va|vs]=|1 -5 1
0 1 1
such that D = C"1AC.
-3 10 —6
e)A=| 0 7 —6
0 0 1
e The characteristic polynomial of A is
-3-X 10 —6
Pa(N) = 0 7T—X —6 |=—A+3)(A=7)(A-1)
0 0 1—-A

So A has three distinct real eigenvalues: A\ = —3, Ao =7 and A3 = 1.
The eigenspace corresponding to the first eigenvector A\; = 0 is the null space of

0 10 —6 01 0
A—(-3)I=|0 10 —6 row reduction 0 0 1
00 4 0 0 0
is the solution set of
To =0 1 is free
z3 =20 = x9 =10
0=0 x3=0
So the corresponding eigenvectors are
1
V1 € span 0
0
The eigenspace corresponding to the eigenvector Ay = 7 is the null space of
-10 10 —6 1 =10
A-(NI= 0 0 -6 row reduction 00 1

0 0 -6 00 O
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is the solution set of

X1 — T2 = 0 r1 = T
x3=0 = Tq is free
0=0 3 =0
So the corresponding eigenvectors are
1
Vg € span 1
0
The eigenspace corresponding to the first eigenvector A3 = 1 is the null space of
-4 10 -6 1 0 -1
A-1I=| 0 6 -6 row reduction 0 1 -1
0 0 0 0 0 0
is the solution set of
r1 — T3 = 0 Tr1 = I3
ro —ax3 =0 = T2 = T3
0=0 x3 is free

So the corresponding eigenvectors are

1
V3 € span 1
1

From the eigenvalues of A we can now form the diagonal matrix D:

A0 0 -3 0 0
0 0 X 0 01
And from the coresponding eigenvectors we can form the invertible matrix C
111
C:[V1|V2‘V3}: 0 1 1
0 0 1

such that D = C~1AC.

4. Determine whether or not the following matrices are diagonalizable.

1 2 6
(a)A=[2 0 -4
6 —4 3

e Yes, because the matrix is real and symmetric. (See Theorem 14.8 in the Lecture 14.)

(b) A =

O O W
[en il RN
== O

e The matrix A — Al is upper triangular and so its determinant is readily computed. We have
pa(A) =det(A —AI) = (A=3)(A=2)(A—1)

and so A has three distinct eigenvalues: A = 3,2,1 . This implies that A has at least three linearly
independent eigenvectors, and that is that is needed for a 3 X 3 matrix to be diagonalizable. Hence,
A is diagonalizable.
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(c) A=

OO W
S W =
w = o

e Let us calculate the characteristic polynomial of A:
3—-A 1 0
Pa(AN)=det(A—AI)=| 0 3-Xx 1 |=@3-1?
0 0 3—A

We thus have only one eigenvalue, A = 3. The corresponding eigenspace is the null space of

0 1 0
A-3I=]0 0 1
0 0 O
or, equivalently, the solution space of
To = 0 Z1 1
z3 =20 = x=|0 € span 0
0=0 0 0

So the eigenspace is just 1-dimensional. But we need three linearly independent eigenvectors to
construct the matrix C that diagonalizes A. Hence, A is not diagonalizable. (Remark: from
the row echelon form of A — (3)I it was already apparent that there would be only one linearly
independent eigenvalues. In general, if a row echelon form of A — AI has k columns without pivots,
then A will have exactly k linearly independent eigenvectors with eigenvalue A. For as we have
seen, counting the columns without pivots in a REF of a matrix M reveals the dimension of the
solution set of Mx = 0.)



