
Math 3013
Solutions to Problem Set 8

1. Find the characteristic polynomial, the real eigenvalues, and the corresponding eigenvectors for the
following matrices.

(a) A =

[
7 5
−10 −8

]
• The characteristic polynomial is

P (λ) = det (A− λI) =

∣∣∣∣ 7− λ 5
−10 −8− λ

∣∣∣∣ = (7− λ) (−8− λ)− (5) (−10) = λ2 + λ− 6 = (λ+ 3) (λ− 2)

The eigenvalues of A correspond to the roots of P (λ) = 0; so we have two eigenvalues λ1 = −3 and
λ2 = 2.

The eigenspace corresponding to the eigenvalue λ1 = −3 is the solution set of (A− (−3)I)x = 0;
i.e., the null space of the matrix

A− (−3)I =

[
7 + 3 5
−10 −8 + 3

]
=

[
10 5
−10 −5

]
R1 → 1

5R1

R2 → R2 −R1
−−−−−−−−−−−−→

[
2 1
0 0

]
The null space of the last matrix is the solution set of

2x1 + x2 = 0
0 = 0

⇒ x1 = −1

2
x2 ⇒ x =

[
− 1

2x2
x2

]
∈ span

([
− 1

2
1

])
Thus, the eigenvectors corresponding to the eigenvalue λ1 = −3 are thus of the form

v1 = r

[
− 1

2
1

]
, r ∈ R−{0}

The eigenspace corresponding to the eigenvalue λ2 = 2 is the solution set of (A− (2)I)x = 0;
i.e., the null space of the matrix

A− (−3)I =

[
7− 2 5
−10 −8− 2

]
=

[
5 5
−10 −10

]
R1 → 1

5R1

R2 → R2 + 2R1
−−−−−−−−−−−−−→

[
1 1
0 0

]
The null space of the last matrix is the solution set of

x1 + x2 = 0
0 = 0

⇒ x1 = −x2 ⇒ x =

[
−x2
x2

]
∈ span

([
−1
1

])
Thus, the eigenvectors corresponding to the eigenvalue λ2 = 2 are thus of the form

v2 = r

[
−1
1

]
, r ∈ R−{0}

(b) A =

[
−7 −5
16 17

]
• The characteristic polynomial is

P (λ) = det (A− λI) =

∣∣∣∣ −7− λ −5
16 17− λ

∣∣∣∣ = λ2 − 10λ− 39 = (λ− 13) (λ+ 3)

The eigenvalues of A correspond to the roots of P (λ) = 0; so we have two eigenvalues λ1 = 13 and
λ2 = −3.

The eigenspace corresponding to the eigenvalue λ1 = 13 is the solution set of (A− (13)I)x = 0;
i.e., the null space of the matrix

A− (13)I =

[
−20 −5
16 4

]
R1 → − 1

5R1

R2 → R2 + 4
5R1

−−−−−−−−−−−−−→

[
4 1
0 0

]
1



2

The null space of the last matrix is the solution set of

4x1 + x2 = 0
0 = 0

⇒ x1 = −1

4
x2 ⇒ x =

[
− 1

4x2
x2

]
∈ span

([
− 1

4
1

])
Thus, the eigenvectors corresponding to the eigenvalue λ1 = 13 are thus of the form

v1 = r

[
− 1

4
1

]
, r ∈ R−{0}

The eigenspace corresponding to the eigenvalue λ2 = −3 is the solution set of (A− (−3)I)x = 0;
i.e., the null space of the matrix

A− (−3)I =

[
−4 −5
16 20

]
R1 → −R1

R2 → R2 + 4R1
−−−−−−−−−−−−−→

[
4 5
0 0

]
The null space of the last matrix is the solution set of

4x1 + 5x2 = 0
0 = 0

⇒ x1 = −5

4
x2 ⇒ x =

[
− 5

4x2
x2

]
∈ span

([
− 5

4
1

])
Thus, the eigenvectors corresponding to the eigenvalue λ2 = −3 are thus of the form

v2 = r

[
− 5

4
1

]
, r ∈ R−{0}

(c) A =

[
1 −2
1 2

]
• The characteristic polynomial is

P (λ) = det (A− λI) =

∣∣∣∣ 1− λ −2
1 2− λ

∣∣∣∣ = λ2 − 3λ+ 4

The roots of this (quadratic) polynomial are given by the quadratic formula:

λ =
−(−3)±

√
(−3)2 − 4(1)(4)

2(1)
=

3±
√

9− 16

2
=

3

2
±
√
−7

2
=

3

2
±
√

7i

Thus, we have two complex roots. Lacking a real eigenvalue, the problem ends here.

(d) A =

 −1 0 0
−4 2 −1
4 0 3


• The characteristic polynomial is

P (λ) = det (A− λI) =

∣∣∣∣∣∣
−1− λ 0 0
−4 2− λ −1
4 0 3− λ

∣∣∣∣∣∣
= (−1− λ)

∣∣∣∣ 2− λ −1
0 3− λ

∣∣∣∣− (0)

∣∣∣∣ −4 −1
4 3− λ

∣∣∣∣+ (0)

∣∣∣∣ −4 2− λ
4 0

∣∣∣∣
= (−1− λ) ((2− λ)(3− λ)− 0)− 0 + 0

= − (λ+ 1) (λ− 2) (λ− 3)

We thus have three eigenvalues: λ1 = −1, λ2 = 2, and λ3 = 3.
The eigenspace corresponding to the eigenvalue λ1 = −1 correspond to the null space of

A− (−1)I =

 0 0 0
−4 3 −1
4 0 4

  

 1 0 1
0 1 1
0 0 0
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i.e. the solution set of

x1 + x3 = 0
x2 + x3 = 0

0 = 0
⇒ x1 = −x3

x2 = −x3
⇒ x =

 −x3−x3
x3

 ∈ span
 −1

−1
1


Thus, the eigenvectors corresponding to the eigenvalue λ1 = −1 will be vectors of the form

v1 = r

 −1
−1
1

 , r ∈ R−{0}

The eigenspace corresponding to the eigenvalue λ2 = 2 correspond to the null space of

A− (2)I =

 −3 0 0
−4 0 −1
4 0 1

  

 1 0 0
0 0 1
0 0 0


i.e. the solution set of

x1 = 0
x3 = 0
0 = 0

⇒ x =

 0
−x2

0

 ∈ span
 0

1
0


Thus, the eigenvectors corresponding to the eigenvalue λ2 = 2 will be vectors of the form

v2 = r

 0
1
0

 , r ∈ R−{0}

The eigenspace corresponding to the eigenvalue λ3 = 3 correspond to the null space of

A− (3)I =

 −4 0 0
−4 −1 −1
4 0 0

  

 1 0 0
0 1 1
0 0 0


i.e. the solution set of

x1 = 0
x2 + x3 = 0

0 = 0
⇒ x1 = 0

x2 = −x3
⇒ x =

 0
−x3
x3

 ∈ span
 0

−1
1


Thus, the eigenvectors corresponding to the eigenvalue λ3 = 3 will be vectors of the form

v3 = r

 0
−1
1

 , r ∈ R−{0}

(e) A =

 1 0 0
−8 4 −5
8 0 9


• The characteristic polynomial is

P (λ) = det (A− λI) =

∣∣∣∣∣∣
1− λ 0 0
−8 4− λ −5
8 0 9− λ

∣∣∣∣∣∣ = (1− λ) (4− λ) (9− λ)

So we have three possible eigenvalues : λ1 = 1, λ2 = 4, and λ3 = 9. The corresponding eigenvectors
are calculated as in the preceding problems:

λ1 = 1 ⇒ v1 = r [−1,−1, 1] , r ∈ R− {0}
λ2 = 4 ⇒ v2 = r [0, 1, 0] , r ∈ R− {0}
λ3 = 9 ⇒ v3 = r [0,−1, 1] , r ∈ R− {0}
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(f) A =

 −4 0 0
−7 2 −1
7 0 3


• The characteristic polynomial is

P (λ) = det (A− λI) =

∣∣∣∣∣∣
−4− λ 0 0
−7 2− λ −1
7 0 3− λ

∣∣∣∣∣∣ = (2− λ) (3− λ) (−4− λ)

So we have three real eigenvalues: λ1 = 2, λ2 = 3, and λ3 = −4. The corresponding eigenvectors
(calculated as in the preceding problems) are

λ1 = 2 ⇒ v1 = r [0, 1, 0] , r ∈ R− {0}
λ2 = 3 ⇒ v2 = r [0, 1,−1] , r ∈ R− {0}
λ3 = −4 ⇒ v3 = r [−1,−1, 1] , r ∈ R− {0}

2. Find the eigenvalues λi and the corresponding eigenvectors vi for the following linear transformations.

(a) T ([x, y]) = [2x− 3y,−3x+ 2y]

• First we calculate the matrix corresponding to T :

T ([1, 0]) = [2,−3]
T ([0, 1]) = [−3, 2]

⇒ AT =

[
2 −3
−3 2

]
The characteristic polynomial for this matrix is

P (λ) = det (AT − λI) =

∣∣∣∣ 2− λ −3
−3 2− λ

∣∣∣∣ = λ2 − 4λ− 5 = (λ− 5) (λ+ 1)

We thus have two real eigenvalues: λ1 = 5 and λ2 = −1.
The eigenspace corresponding to the eigenvalue λ1 = 5 is the null space of∣∣∣∣ 2− 5 −3

−3 2− 5

∣∣∣∣ =

∣∣∣∣ −3 −3
−3 −3

∣∣∣∣  

∣∣∣∣ 1 1
0 0

∣∣∣∣
which is the solution set of

x1 + x2 = 0
0 = 0

⇒ x =

[
−x2
x2

]
∈ span

([
−1
1

])
Hence, the corresponding eigenvectors are of the form

v1 = r

[
−1
1

]
, r ∈ R−{0}

The eigenspace corresponding to the eigenvalue λ1 = −1 is the null space of∣∣∣∣ 2− (−1) −3
−3 2− (−1)

∣∣∣∣ =

∣∣∣∣ 3 −3
−3 3

∣∣∣∣  

∣∣∣∣ 1 −1
0 0

∣∣∣∣
which is the solution set of

x1 − x2 = 0
0 = 0

⇒ x =

[
x2
x2

]
∈ span

([
1
1

])
Hence, the corresponding eigenvectors are of the form

v2 = r

[
1
1

]
, r ∈ R−{0}

(b) T ([x1, x2, x3]) = [x1 + x3, x2, x1 + x3]
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• First we calculate the matrix corresponding to this linear transfomation:

T ([1, 0, 0]) = [1, 0, 1]
T ([0, 1, 0]) = [0, 1, 0]
T ([0, 0, 1]) = [1, 0, 1]

⇒ AT =

 1 0 1
0 1 0
1 0 1


The characteristic polynomial for this matrix is

P (λ) =

∣∣∣∣∣∣
1− λ 0 1

0 1− λ 0
1 0 1− λ

∣∣∣∣∣∣ = −λ (−1 + λ) (λ− 2)

We thus have three possible eigenvalues: λ1 = 0, λ2 = 1, and λ2 = 2.
The eigenspace corresponding to λ1 = 0 will be the null space of 1− 0 0 1

0 1− 0 0
1 0 1− 0

 =

 1 0 1
0 1 0
1 0 1

  

 1 0 1
0 1 0
0 0 0


or, equivalently, the solution set of

x1 + x3 = 0
x2 = 0
0 = 0

⇒ x =

 −x30
x3


so the correpsponding eigenvectors will be of the form

v1 = r

 −1
0
1

 , r ∈ R−{0}

The eigenspace corresponding to λ1 = 1 will be the null space of 1− 1 0 1
0 1− 1 0
1 0 1− 1

 =

 0 0 1
0 0 0
1 0 0

  

 1 0 0
0 0 1
0 0 0


or, equivalently, the solution set of

x1 = 0
x3 = 0
0 = 0

⇒ x =

 0
x2
0


so the correpsponding eigenvectors will be of the form

v2 = r

 0
1
0

 , r ∈ R−{0}

The eigenspace corresponding to λ1 = 2 will be the null space of 1− 2 0 1
0 1− 2 0
1 0 1− 2

 =

 −1 0 1
0 −1 0
1 0 −1

  

 1 0 −1
0 1 0
0 0 0


or, equivalently, the solution set of

x1 − x3 = 0
x2 = 0
0 = 0

⇒ x =

 x3
0
x3


so the correpsponding eigenvectors will be of the form

v3 = r

 1
0
1

 , r ∈ R−{0}
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3. Find the eigenvalues λi, the corresponding eigenvectors vi of the following matrices. Also find an
invertible matrix C and a diagonal matrix D such that D = C−1AC.

(a) A =

[
−3 4
4 3

]
• First, we calculate the eigenvalues and eigenvectors of A.

0 = det (A− λI) =

∣∣∣∣ −3− λ 4
4 3− λ

∣∣∣∣ = λ2 − 25 = (λ− 5)(λ+ 5) ⇒ λ = 5,−5

The eigenspace corresponding to the eigenvalue λ1 = 5 is the null space of

A− (5)I =

[
−8 4
4 −2

]
 

[
2 −1
0 0

]
or, equivalently, the solution space of

2x1 − x2 = 0
0 = 0

⇒ x =

[
2x2
x2

]
∈ span

([
2
1

])
So the eigenspace corresponding to the eigenvalue λ1 = 5 is the subspace generated by the vector

v1 =

[
2
1

]
The eigenspace corresponding to the eigenvalue λ2 = −5 is the null space of

A− (−5)I =

[
2 4
4 8

]
 

[
1 2
0 0

]
or, equivalently, the solution space of

x1 + 2x2 = 0
0 = 0

⇒ x =

[
− 1

2x2
x2

]
∈ span

([
− 1

2
1

])
= span

([
1
−2

])
So the eigenspace corresponding to the eigenvalue λ2 = −5 is the subspace generated by the vector

v2 =

[
1
−2

]
Now that we know the eigenvalues and eigenvectors of A, we can write down the diagonal matrix

D by arranging the eigenvalues of A along the main diagonal of D

D =

[
λ1 0
0 λ2

]
=

[
5 0
0 −5

]
The matrix C can be written down by arranging the eigenvectors of A (in order) as the column
vectors of a 2× 2 matrix:

C = [v1 | v2] =

[
2 1
1 −2

]
One can easily verify that

C−1 =

[
2
5

1
5

1
5 − 2

5

]
and that D = C−1AC (however, this fact is already guaranteed by the way we constructed the
matrices D and C).

(b) A =

[
3 2
1 4

]
• First, we calculate the eigenvalues and eigenvectors of A.

0 = det (A− λI) =

∣∣∣∣ 3− λ 2
1 4− λ

∣∣∣∣ = λ2 − 7λ+ 10 = (λ− 2)(λ− 5) ⇒ λ = 2, 5
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The eigenspace corresponding to the eigenvalue λ1 = 2 is the null space of

A− (2)I =

[
1 2
1 2

]
 

[
1 2
0 0

]
or, equivalently, the solution space of

x1 + 2x2 = 0
0 = 0

⇒ x =

[
−2x2
x2

]
∈ span

([
−2
1

])
So the eigenspace corresponding to the eigenvalue λ1 = 2 is the subspace generated by the vector

v1 =

[
−2
1

]
The eigenspace corresponding to the eigenvalue λ2 = 5 is the null space of

A− (5)I =

[
−2 2
1 −1

]
 

[
1 −1
0 0

]
or, equivalently, the solution space of

x1 − x2 = 0
0 = 0

⇒ x =

[
x2
x2

]
∈ span

([
1
1

])
So the eigenspace corresponding to the eigenvalue λ2 = 5 is the subspace generated by the vector

v2 =

[
1
1

]
Now that we know the eigenvalues and eigenvectors of A, we can write down the diagonal matrix

D by arranging the eigenvalues of A along the main diagonal of D

D =

[
λ1 0
0 λ2

]
=

[
2 0
0 5

]
The matrix C can be written down by arranging the eigenvectors of A (in order) as the column
vectors of a 2× 2 matrix:

C = [v1 | v2] =

[
−2 1
1 1

]

(c) A =

[
7 8
−4 −5

]
• First, we calculate the eigenvalues and eigenvectors of A.

0 = det (A− λI) =

∣∣∣∣ 7− λ 8
−4 −5− λ

∣∣∣∣ = λ2 − 2λ− 3 = (λ− 3)(λ+ 1) ⇒ λ = 3,−1

The eigenspace corresponding to the eigenvalue λ1 = 3 is the null space of

A− (3)I =

[
4 8
−4 −8

]
 

[
1 2
0 0

]
or, equivalently, the solution space of

x1 + 2x2 = 0
0 = 0

⇒ x =

[
−2x2
x2

]
∈ span

([
−2
1

])
So the eigenspace corresponding to the eigenvalue λ1 = 3 is the subspace generated by the vector

v1 =

[
−2
1

]
The eigenspace corresponding to the eigenvalue λ2 = −1 is the null space of

A− (−1)I =

[
8 8
−4 −4

]
 

[
1 1
0 0

]
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or, equivalently, the solution space of

x1 + x2 = 0
0 = 0

⇒ x =

[
−x2
x2

]
∈ span

([
−1
1

])
So the eigenspace corresponding to the eigenvalue λ2 = −1 is the subspace generated by the vector

v2 =

[
−1
1

]
Now that we know the eigenvalues and eigenvectors of A, we can write down the diagonal matrix

D by arranging the eigenvalues of A along the main diagonal of D

D =

[
λ1 0
0 λ2

]
=

[
3 0
0 −1

]
The matrix C can be written down by arranging the eigenvectors of A (in order) as the column
vectors of a 2× 2 matrix:

C = [v1 | v2] =

[
−2 −1
1 1

]

(d) A =

 6 3 −3
−2 −1 2
16 8 −7


• The characteristic polynomial of A is

PA(λ) =

∣∣∣∣∣∣
6− λ 3 −3
−2 −1− λ 2
16 8 −7− λ

∣∣∣∣∣∣ = 3λ− 2λ2 − λ3 = −λ (λ+ 3) (λ− 1)

So A has three distinct real eigenvalues: λ1 = 0, λ2 = −3 and λ3 = 1.
The eigenspace corresponding to the first eigenvector λ1 = 0 is the null space of

A− (0)I =

 6 3 −3
−2 −1 2
16 8 −7

 !

 1 1
2 0

0 0 1
0 0 0


is the solution set of

x1 = − 1
2x2

x3 = 0
0 = 0

So the corresponding eigenvectors are

v1 ∈ span

 − 1
2

1
0


The eigenspace corresponding to the eigenvector λ2 = −3 is the null space of

A− (2)I =

 9 3 −3
−2 2 2
16 8 −4

 row reduction−−−−−−−−−−−−−→

 1 0 − 1
2

0 1 1
2

0 0 0


and so the solution set of

x1 = 1
2x3

x2 = − 1
2x3

x3 is free

So the corresponding eigenvectors are

v2 ∈ span

 1
2
− 1

2
1
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The eigenspace corresponding to the first eigenvector λ3 = 1 is the null space of

A− (1)I =

 5 3 −3
−2 −2 2
16 8 −8

 row reduction−−−−−−−−−−−−−→

 1 0 0
0 1 −1
0 0 0


is the solution set of

x1 = 0
x2 = x3
x3 is free

So the corresponding eigenvectors are

v3 ∈ span

 0
1
1


From the eigenvalues of A we can now form the diagonal matrix D:

D =

 λ1 0 0
0 λ2 0
0 0 λ3

 =

 0 0 0
0 −3 0
0 0 1


And from the coresponding eigenvectors we can form the invertible matrix C

C = [v1 | v2 | v3] =

 − 1
2

1
2 0

1 − 1
2 1

0 1 1


such that D = C−1AC.

(e) A =

 −3 10 −6
0 7 −6
0 0 1



• The characteristic polynomial of A is

PA(λ) =

∣∣∣∣∣∣
−3− λ 10 −6

0 7− λ −6
0 0 1− λ

∣∣∣∣∣∣ = −(λ+ 3) (λ− 7) (λ− 1)

So A has three distinct real eigenvalues: λ1 = −3, λ2 = 7 and λ3 = 1.
The eigenspace corresponding to the first eigenvector λ1 = 0 is the null space of

A− (−3)I =

 0 10 −6
0 10 −6
0 0 4

 row reduction−−−−−−−−−−−−−→

 0 1 0
0 0 1
0 0 0


is the solution set of

x2 = 0
x3 = 0
0 = 0

⇒
x1 is free
x2 = 0
x3 = 0

So the corresponding eigenvectors are

v1 ∈ span

 1
0
0


The eigenspace corresponding to the eigenvector λ2 = 7 is the null space of

A− (7)I =

 −10 10 −6
0 0 −6
0 0 −6

 row reduction−−−−−−−−−−−−−→

 1 −1 0
0 0 1
0 0 0
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is the solution set of
x1 − x2 = 0
x3 = 0
0 = 0

⇒
x1 = x2
x2 is free
x3 = 0

So the corresponding eigenvectors are

v2 ∈ span

 1
1
0


The eigenspace corresponding to the first eigenvector λ3 = 1 is the null space of

A− (1)I =

 −4 10 −6
0 6 −6
0 0 0

 row reduction−−−−−−−−−−−−−→

 1 0 −1
0 1 −1
0 0 0


is the solution set of

x1 − x3 = 0
x2 − x3 = 0
0 = 0

⇒
x1 = x3
x2 = x3
x3 is free

So the corresponding eigenvectors are

v3 ∈ span

 1
1
1


From the eigenvalues of A we can now form the diagonal matrix D:

D =

 λ1 0 0
0 λ2 0
0 0 λ3

 =

 −3 0 0
0 7 0
0 0 1


And from the coresponding eigenvectors we can form the invertible matrix C

C = [v1 | v2 | v3] =

 1 1 1
0 1 1
0 0 1


such that D = C−1AC.

4. Determine whether or not the following matrices are diagonalizable.

(a) A =

 1 2 6
2 0 −4
6 −4 3


• Yes, because the matrix is real and symmetric. (See Theorem 14.8 in the Lecture 14.)

(b) A =

 3 1 0
0 2 1
0 0 1


• The matrix A− λI is upper triangular and so its determinant is readily computed. We have

pA(λ) = det(A− λI) = (λ− 3)(λ− 2)(λ− 1)

and so A has three distinct eigenvalues: λ = 3, 2, 1 . This implies that A has at least three linearly
independent eigenvectors, and that is that is needed for a 3× 3 matrix to be diagonalizable. Hence,
A is diagonalizable.
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(c) A =

 3 1 0
0 3 1
0 0 3


• Let us calculate the characteristic polynomial of A:

PA(λ) = det (A− λI) =

∣∣∣∣∣∣
3− λ 1 0

0 3− λ 1
0 0 3− λ

∣∣∣∣∣∣ = (3− λ)
3

We thus have only one eigenvalue, λ = 3. The corresponding eigenspace is the null space of

A− (3)I =

 0 1 0
0 0 1
0 0 0


or, equivalently, the solution space of

x2 = 0
x3 = 0
0 = 0

⇒ x =

 x1
0
0

 ∈ span
 1

0
0


So the eigenspace is just 1-dimensional. But we need three linearly independent eigenvectors to
construct the matrix C that diagonalizes A. Hence, A is not diagonalizable. (Remark: from
the row echelon form of A − (3)I it was already apparent that there would be only one linearly
independent eigenvalues. In general, if a row echelon form of A−λI has k columns without pivots,
then A will have exactly k linearly independent eigenvectors with eigenvalue λ. For as we have
seen, counting the columns without pivots in a REF of a matrix M reveals the dimension of the
solution set of Mx = 0.)


