
Math 3013
Solutions to Problem Set 6

1. Consider the set F (R) of functions on the real line. This can be given the structure of a vector space by
setting

(f + g) (x) ≡ f (x) + g (x) (vector addition of functions)

(λf) (x) ≡ λf (x) (scalar multiplication of functions)

0F(R) (x) = 0 for all x (the zero vector in F (R)

Determine if the following sets are subspaces of F (R) :

(a) S =
{
f ∈ F (R) | df

dx = 0
}

• Suppose f, g ∈ S. It suffices to check that αf + βg is also in S for all real numbers α, β. The
condition for a function to be in S is that its derivative must vanish. Thus we check

0 = ? d

dx
(αf (x) + βg (x))

=
d

dx
(αf (x)) +

d

dx
(βg (x)) (differentiating term by term)

= α
df

dx
(x) + β

dg

dx
(x) (differentiation ignores constants)

= α · 0 + β · 0 (because f, g ∈ S)

= 0

So, yes, S is a subspace of F (R).

(b) T =
{
f ∈ F (R) |

∫ 1

0
f (x) dx = 0

}
• This is very similar to part (a), since we can integrate term by term and because integration ignores

constants. Suppose f, g ∈ T and consider the linear combination αf + βg. Then

0 = ?

∫ 1

0

(αf (x) + βg (x)) dx

= α

∫ 1

0

f (x) dx + β

∫ 1

0

g (x) dx

= α · 0 + β · 0
= 0

So αf+βg ∈ T , and since T is closed under arbitrary linear combinations, T is a subspace of F (R) .

(c) U = {f ∈ F (R) | f (3) = 0}

• Let f, g ∈ U and consider αf + βg. We check

0 = ? (αf + βg) (3)

= αf (3) + βg (3)

= α · 0 + β · 0
= 0

So U is closed under arbitrary linear combinations, and so U is a subspace of F (R).

(d) V = {f ∈ F (R) | f (0) = 3}
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• V will not be closed under vector addition or scalar multiplication. Consider f ∈ V then consider
is scalar multiple by 0. Then

(0 · f) (0) = 0 · f (0) = 0 · 3 = 0

6= 3

So (0 · f) is not in V , and so V is not closed under scalar multiplication; hence V is not a subspace
of F (R).

Alternatively, consider f, g ∈ V and their sum f + g. We have

(f + g) (0) = f (0) + g (0) = 3 + 3 = 6

6= 3

and so V is not closed under vector addition, and so V is not a subspace of F (R).

2. Let P2 be the vector space of polynomials of degree ≤ 2.

(a) Show that B =
{

1, x, x2
}

is a basis for P2

• We need to check two things. First, that P2 = span
(
1, x, x2

)
and, secondly, that

{
1, x, x2

}
are

linearly independent. By the very definition of P2

P2 ≡
{
a0 + a1x+ a2x

2 | a0, a1, a2 ∈ R
}

=
{
a0 · 1 + a1 · x+ a2 · x1 | a0, a1, a2 ∈ R

}
≡ span

(
1, x, x2

)
the first condition follows. To see if

{
1, x, x2

}
are linearly dependent we look for non-trivial solutions

of

(*) a0 · 1 + a1 · x+ a2 · x2 = 0 · 1 + 0 · x+ 0 · x2 (the zero polynomial)

But two polynomials are equal only if their coefficients coincide; hence (*) requires

a0 = 0 , a1 = 0 , a1 = 0

Thus,
{

1, x, x2
}

are linearly independent.

(b) What are the coordinates of a polynomial 2 + x2 with respect to B.

• We use the coordinatization map

iB : a0 · 1 + a1 · x+ a2 · x2 7−→ [a0, a1, a2] ∈ R3

We then have

2 + x2 7−→ [2, 0, 1]

(c) Show that T : P2 → P2 : p 7−→ x dp
dx − p is a linear transformation.

• Let p1, p2 ∈ P2, α, β ∈ R and consider the linear combination αp1 + βp2. Then

T (αp1 + βp2) = x
d

dx
(αp1 + βp2)− (αp1 + βp2)

= αx
dp1
dx

+ βx
dp2
dx
− αp1 + βp2

= α

(
x
dp1
dx
− p1

)
+ β

(
x
dp2
dx
− p2

)
= αT (p1) + βT (p2)

and so T is a linear transformation.

(d) Find the matrix AT,B,B representing T .
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• The matrix AT,B,B is formed by applying T to each basis vector for P2, converting these results
to their respective coordinate vectors and using these coordinate vectors to form the columns of
AT,B,B .

1 T−−−−→ x
d

dx
(1)− 1 = −1 = (−1) · 1 + (0) · x+ (0) · x2 7−→ [−1, 0, 0]

x T−−−−→ x
d

dx
(x)− x = 0 = (0) · 1 + (0) · x+ (0) · x2 7−→ [0, 0, 0]

x2 T−−−−→ x
d

dx

(
x2
)
− x2 = x2 = (0) · 1 + (0) · x+ (1) · x2 7−→ [0, 0, 1]

Thus,

AT,B,B =

 −1
0
0

 0
0
0

 0
0
1

 =

 −1 0 0
0 0 0
0 0 1


(e) What is the kernel of T?

• We’ll find the kernel of T by finding the null space of AT,B,B (the solution set of AT,B,Bx = 0) and
then mapping the corresponding coordinate vectors back to polynomials. Now AT,B,B trivially row
reduces to  1 0 0

0 0 1
0 0 0

 ⇒ x1 = 0 , x2 is free , x3 = 0

⇒ NullSp (AT,B,B) = span

 0
1
0


Since [0, 1, 0]←→ the polynomial x, we conclude

ker (T ) = span (x) .

3. Let P be the vector space of polynomials. Prove that span (1, x) = span (1 + 2x, x).

•
span (1, x) = {a0 + a1x | a0, a1 ∈ R} = polynomials of degree ≤ 2

On the other hand,

span (1 + 2x, x) = {b0 (1 + 2x) + b1x | b0, b1 ∈ R}
= {b0 + (b1 + 2b0)x | b0, b1 ∈ R}
⊂ span (1, x)

Note also that the polynomials 1 + 2x and x are linearly independent: for

b0 (1 + 2x) + b1x = 0 ⇒ b0 = 0 , b1 = 0

Therefore, span (1 + 2x, x) is a subspace of span (1, x) and it has the same dimension as span (1, x);
so it must coincide with span (1, x).

4. Consider the following set of polynomials{
1 , 4x+ 3 , 3x− 4 , x2 + 2 , x− x2

}
(a) Determine if these polynomials are linearly independent in P2.
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• Let’s adopt the usual basis
{

1, x, x2
}

for polynomials of degree ≤ 2 and map these polynomials to
their coordinate vectors:

1 → [1, 0, 0]

4x+ 3 → [3, 4, 0]

[3x− 4] → [−4, 3, 0]

x2 + 2 → [2, 0, 1]

x− x2 → [0, 1,−1]

Next, we transform the question about the original polynomials to a question about the vectors just
found:

Are the vectors [1, 0, 0] , [3, 4, 0] , [−4, 3, 0] , [2, 0, 1] , [0, 1,−1] linearly independent?

To answer this question, we arrange the vectors as the rows of a matrix and row reduce to row
echelon form 

1 0 0
3 4 0
−4 3 0
2 0 1
0 1 −1

 →


1 0 0
0 1 0
0 0 1
0 0 0
0 0 0


Observing the zero rows in the row echelon form, we conclude first that the vectors [1, 0, 0] , . . . , [0, 1,−1]
are not linearly independent. And then we can conclude that the original polynomials can not be
linearly independent either.

(b) What is the dimension of

S = span
(
1 , 4x+ 3 , 3x− 4 , x2 + 2 , x− x2

)
• Continuing to use the coordinate vectors [1, 0, 0] , · · · , [0, 1,−1] to study the polynomials 1, . . . , x−x2,

we observe that since the row echelon form of the matrix formed by using [1, 0, 0] , . . . , [0, 1,−1] as
rows has 3 non-zero rows the span of the row vectors is 3-dimensional. Hence, the span of the
original set of polynomials is 3-dimensional.


