1. Determine which of the following mappings are linear transformations.

(a) $T : \mathbb{R}^3 \to \mathbb{R}^2 : T ([x_1, x_2, x_3]) = [x_1 + x_2, x_1 - 3x_2]$

- This mapping is linear since if $v = [x_1, x_2, x_3]$

 $T (\lambda v) = T (\lambda [x_1, x_2, x_3])$

 $= T ([\lambda x_1, \lambda x_2, \lambda x_3])$

 $= [\lambda x_1 + \lambda x_2, \lambda x_1 - 3\lambda x_2]$

 $= \lambda [x_1 + x_2, x_1 - 3x_2]$

 $= \lambda T ([x_1, x_2, x_3])$

 $= \lambda T (v)$ \((T \text{ preserves scalar multiplication}) \)

and if $v = [x_1, x_2, x_3]$ and $v' = [x'_1, x'_2, x'_3]$

$T (v + v') = T ([x_1 + x'_1, x_2 + x'_2, x_3 + x'_3])$

$= [x_1 + x'_1 + x_2 + x'_2, x_1 + x'_1 - 3(x_2 + x'_2)]$

$= [x_1 + x_2, x_1 - 3x_2] + [x'_1 + x'_2, x'_1 - 3x'_2]$

$= T (v) + T (v')$ \((T \text{ preserves vector addition}) \)

(b) $T : \mathbb{R}^3 \to \mathbb{R}^4 : T ([x_1, x_2, x_3]) = [0, 0, 0, 0]$

- This mapping is linear since if $v = [x_1, x_2, x_3]$

 $T (\lambda v) = T ([\lambda x_1, \lambda x_2, \lambda x_3])$

 $= [0, 0, 0, 0]$

 $= \lambda [0, 0, 0, 0]$

 $= \lambda T ([x_1, x_2, x_3])$

 $= \lambda T (v)$ \((T \text{ preserves scalar multiplication}) \)

and if $v = [x_1, x_2, x_3]$ and $v' = [x'_1, x'_2, x'_3]$

$T (v + v') = T ([x_1 + x'_1, x_2 + x'_2, x_3 + x'_3])$

$= [0, 0, 0, 0]$

$= [0, 0, 0, 0] + [0, 0, 0, 0]$

$= T (v) + T (v')$ \((T \text{ preserves vector addition}) \)

(c) $T : \mathbb{R}^3 \to \mathbb{R}^4 : T ([x_1, x_2, x_3]) = [1, 1, 1, 1]$

- This mapping is not linear since if $v = [x_1, x_2, x_3]$

 $T (v) = [1, 1, 1, 1]$

 $T (2v) = [1, 1, 1, 1] \neq 2[1, 1, 1, 1] = 2T (v)$

So the mapping does not preserve scalar multiplication.

(d) $T : \mathbb{R}^2 \to \mathbb{R}^3 : T ([x_1, x_2]) = [x_1 - x_2, x_2 + 1, 3x_1 - 2x_2]$
• This mapping is not linear since, e.g., if \(\mathbf{v} = [1, 1] \)

\[
T(\mathbf{v}) = [0, 2, 1] \\
T(2\mathbf{v}) = T([2, 2]) = [0, 3, 2] \neq [0, 4, 2] = 2T(\mathbf{v})
\]

So the mapping does not preserve scalar multiplication.

2. For each of the following, assume \(T \) is a linear transformation, from the data given, compute the specified value.

(a) Given \(T([1, 0]) = [3, -1] \), and \(T([0, 1]) = [-2, 5] \), find \(T([4, -6]) \).

• Because linear transformations preserve scalar multiplication and vector addition, they also preserve linear combinations:

\[
T(c_1\mathbf{v}_1 + c_2\mathbf{v}_2) = c_1T(\mathbf{v}_1) + c_2T(\mathbf{v}_2)
\]

Now take \(\mathbf{e}_1 = [1, 0] \) and \(\mathbf{e}_2 = [0, 1] \). Then

\[
T([4, -6]) = T(4\mathbf{e}_1 - 6\mathbf{e}_2) \\
= 4T(\mathbf{e}_1) - 6T(\mathbf{e}_2) \\
= 4[3, -1] - 6[-2, 5] \\
= [12 + 12, -4 - 30] \\
= [24, -34]
\]

(b) Given \(T([1, 0, 0]) = [3, 1, 2] \), \(T([0, 1, 0]) = [2, -1, 4] \), and \(T([0, 0, 1]) = [6, 0, 1] \), find \(T([2, -5, 1]) \).

• As in Part (a), we set \(\mathbf{e}_1 = [1, 0, 0] \), \(\mathbf{e}_2 = [0, 1, 0] \), and \(\mathbf{e}_3 = [0, 0, 1] \) and then compute

\[
T([2, -5, 1]) = T(2\mathbf{e}_1 - 5\mathbf{e}_2 + \mathbf{e}_3) \\
= 2T(\mathbf{e}_1) - 5T(\mathbf{e}_2) + T(\mathbf{e}_3) \\
= 2[3, 1, 2] - 5[2, -1, 4] + [6, 0, 1] \\
= [6 - 10 + 6, 2 + 5 + 0, 4 - 20 + 1] \\
= [2, 7, -15]
\]

3. Find the standard matrix representations of the following linear transformations.

(a) \(T([x_1, x_2]) = [x_1 + x_2, x_1 - 3x_2] \)

• The standard matrix representations are computed by computing the action of the linear transformation \(T \) on the standard basis vectors, and then using results as the columns of the corresponding matrix. For the case at hand we have

\[
\mathbf{e}_1 = [1, 0] \Rightarrow T(\mathbf{e}_1) = [1 + 0, 1 - 3(0)] = [1, 1] \\
\mathbf{e}_2 = [0, 1] \Rightarrow T(\mathbf{e}_2) = [0 + 1, 0 - 3(1)] = [1, -3]
\]

So the matrix corresponding to \(T \) is

\[
\begin{bmatrix}
1 & 1 \\
1 & -3
\end{bmatrix}
\]

(b) \(T([x_1, x_2, x_3]) = [x_1 + x_2 + x_3, x_1 + x_2, x_1] \)
• We proceed as in Part (a).

\[\begin{align*}
e_1 &= [1, 0, 0] \Rightarrow T(e_1) = [1 + 0 + 0, 1 + 0] = [1, 1, 1] \\
e_2 &= [0, 1, 0] \Rightarrow T(e_2) = [0 + 1 + 0, 0 + 1] = [1, 1, 0] \\
e_3 &= [0, 0, 1] \Rightarrow T(e_3) = [0 + 0 + 1, 0 + 0] = [1, 0, 0]
\end{align*} \]

So the matrix corresponding to \(T \) is
\[
\begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{bmatrix}
\]

\[\square\]

(c) \(T : \mathbb{R}^3 \to \mathbb{R}^2 : T([x_1, x_2, x_3]) = [x_1 + x_2 + x_3, 2x_1 + 2x_2 + 2x_3] \)

• We again compute the action of \(T \) on each standard basis vector \(e_i \) in the domain \(\mathbb{R}^3 \) of \(T \) and then use the results as the columns of \(A_T \):

\[\begin{align*}
e_1 &= [1, 0, 0] \Rightarrow T(e_1) = [1 + 0 + 0, 2 + 0 + 0] = [1, 2] \\
e_2 &= [0, 1, 0] \Rightarrow T(e_2) = [0 + 1 + 0, 2 + 0 + 2] = [1, 2] \\
e_3 &= [0, 0, 1] \Rightarrow T(e_3) = [0 + 0 + 1, 0 + 2 + 0 + 2] = [1, 2]
\end{align*} \]

\[A_T = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \end{bmatrix} \]

4. For each of the linear transformations \(T : \mathbb{R}^m \to \mathbb{R}^n \) in Problem 3, determine

\[\text{Range} (T) := \{ y \in \mathbb{R}^n \mid y = T(x) \text{ for some } x \in \mathbb{R}^m \} \]

and

\[\text{Kernel} (T) := \{ x \in \mathbb{R}^m \mid T(x) = 0_{\mathbb{R}^n} \} \]

• If the matrix corresponding to \(T \) is \(A_T \), then a basis for \(\text{Range} (T) \) coincides with a basis for the \(\text{ColSp} (A_T) \) and a basis for \(\text{Kernel} (T) \) coincides with a basis for \(\text{NullSp} (A_T) \). These two bases, in turn, can be calculated by reducing \(A_T \) to row echelon form and then interpreting that result accordingly. This I will do below for each of the matrices \(A_T \) computed in Problem 3.

(a) Here we found

\[A_T = \begin{bmatrix} 1 & 1 & -3 \\ 1 & 0 & 1 \end{bmatrix} \]

This matrix row reduces to the following Reduced Row Echelon Form.

\[\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]

Because there is a pivot in each column of the RREF, each column of \(A_T \) is a basis vector for \(\text{ColSp} (A_T) \approx \text{Range} (T) \). Thinking of \(\text{Range} (T) \) as a subspace of \(\mathbb{R}^2 \), and writing vectors in \(\mathbb{R}^2 \) horizontally, we have

\[\text{ColSp} (A_T) = \text{span} \left(\begin{bmatrix} 1 \\ 1 \\ -3 \end{bmatrix} \right) \Rightarrow \text{Range} (T) = \text{span} ([1, 1], [1, -3]) \]

Because there are no columns without pivots there are no free parameters in the solution of \(A_T x = 0 \). Therefore, \(x = 0 \) is the only solution and so \(\text{NullSp} (A_T) = \{0\} \). Thus,

\[\text{Kernel} (T) = \text{NullSp} (A_T) = \{0\} \]

(b) Here we found

\[A_T = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \]
This matrix row reduces to the following matrix in RREF
\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

Just like in part (a), there is a pivot in every column of the RREF and so each column of the original matrix is a basis vector for $\text{ColSp} (A_T) \approx \text{Range} (T)$. Thus,

\[
\text{ColSp} (A_T) = \text{span} \left(\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right) \Rightarrow \text{Range} (T) = \text{span} ([1, 1, 1], [1, 1, 0], [1, 0, 0])
\]

Also, there are no free parameters in the solution set of $A_T x = 0$, and so

\[
\text{Kernel} (T) \approx \text{NullSp} (A_T) = \{0\}
\]

(c) Here we found

\[
A_T = \begin{bmatrix}
1 & 1 & 1 \\
2 & 2 & 2
\end{bmatrix}
\]

This matrix row reduces to the following RREF
\[
\begin{bmatrix}
1 & 1 & 1 \\
0 & 0 & 0
\end{bmatrix}
\]

Since only the first column of the RREF contains a pivot, just the first column of A_T will provide a basis for $\text{ColSp} (A_T) \approx \text{Range} (T)$. Thus,

\[
\text{ColSp} (A_T) = \text{span} \left(\begin{bmatrix} 1 \\ \end{bmatrix} \right) \Rightarrow \text{Range} (T) = \text{span} ([1, 2])
\]

There are two columns without pivots, thus two free parameters x_2, x_3 in the solution set of $A_T x = 0$. To get a basis for $\text{NullSp} (A_T) \approx \text{Kernel} (T)$, we’ll write down the general solution of $A_T x = 0$ and grab the basis vectors from that. From the RREF form of A_T we get the following equations

\[
\begin{align*}
x_1 + x_2 + x_3 &= 0 \\
0 &= 0
\end{align*}
\]

\[
\Rightarrow \quad x_1 = -x_2 - x_3 \quad \Rightarrow \quad x = \begin{bmatrix} -x_2 - x_3 \\ x_2 \\ x_3 \end{bmatrix} = x_2 \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}
\]

And so

\[
\text{NullSp} (A_T) = \text{span} \left(\begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \right) \Rightarrow \text{Kernel} (T) = \text{span} ([1, -1, 0], [-1, 0, 1])
\]

\[
x_1 + x_2 + x_3 = 0 \\
0 = 0
\]

5. If $T : \mathbb{R}^2 \rightarrow \mathbb{R}^3$ is defined by $T ([x_1, x_2]) = [2x_1 + x_2, x_1, x_1 - x_2]$ and $T' : \mathbb{R}^3 \rightarrow \mathbb{R}^2$ is defined by $T' ([x_1, x_2, x_3]) = [x_1 - x_2 + x_3, x_1 + x_2]$, find the standard matrix representation for the linear transformation $T' \circ T$ that carries \mathbb{R}^2 into \mathbb{R}^2. Find a formula for $(T' \circ T) ([x_1, x_2])$.

- The matrix representations corresponding to T and T' are

\[
M_T = \begin{bmatrix}
2 & 1 \\
1 & 0 \\
1 & -1
\end{bmatrix}, \quad M_{T'} = \begin{bmatrix}
1 & -1 & 1 \\
1 & 1 & 0 \\
1 & 1 & -1
\end{bmatrix}
\]

The matrix representation corresponding to $T' \circ T$ will be given by the product of the corresponding matrices

\[
M_{T' \circ T} = M_{T'} M_T = \begin{bmatrix}
1 & -1 & 1 \\
1 & 1 & 0 \\
1 & 1 & -1
\end{bmatrix} \begin{bmatrix}
2 & 1 \\
1 & 0 \\
1 & -1
\end{bmatrix} = \begin{bmatrix}
2 & 0 \\
3 & 1
\end{bmatrix}
\]
Hence

\[(T' \circ T) (x_1, x_2) = [2x_1, 3x_1 + x_2]\]