
Math 3013
Solutions to Problem Set 5

1. Determine which of the following mappings are linear transformations.

(a) T : R3 → R2 : T ([x1, x2, x3]) = [x1 + x2, x1 − 3x2]

• This mapping is linear since if v = [x1, x2, x3]

T (λv) = T (λ [x1, x2, x3])

= T ([λx1, λx2, λx3])

= [λx1 + λx2, λx1 − 3λx2]

= λ [x1 + x2, x1 − 3x2]

= λT ([x1, x2, x3])

= λT (v) (T preserves scalar multiplication)

and if v = [x1, x2, x3] and v′= [x′1, x
′
2, x
′
3]

T (v + v′) = T ([x1 + x′1, x2 + x′2, x3 + x′3])

= [x1 + x′1 + x2 + x′2, x1 + x′1 − 3(x2 + x′2)]

= [x1 + x2, x1 − 3x2] + [x′1 + x′2, x
′
1 − 3x′2]

= T (v) + T (v′) (T preserves vector addition)

�

(b) T : R3 → R4 : T ([x1, x2, x3]) = [0, 0, 0, 0]

• This mapping is linear since if v = [x1, x2, x3]

T (λv) = T ([λx1, λx2, λx3])

= [0, 0, 0, 0]

= λ [0, 0, 0, 0]

= λT ([x1, x2, x3])

= λT (v) (T preserves scalar multiplication)

and if v = [x1, x2, x3] and v′= [x′1, x
′
2, x
′
3]

T (v + v′) = T ([x1 + x′1, x2 + x′2, x3 + x′3])

= [0, 0, 0, 0]

= [0, 0, 0, 0] + [0, 0, 0, 0]

= T (v) + T (v′) (T preserves vector addition)

�

(c) T : R3 → R4 : T ([x1, x2, x3]) = [1, 1, 1, 1]

• This mapping is not linear since if v = [x1, x2, x3]

T (v) = [1, 1, 1, 1]

T (2v) = [1, 1, 1, 1] 6= 2 [1, 1, 1, 1] = 2T (v)

So the mapping does not preserve scalar multiplication. �

(d) T : R2 → R3 : T ([x1, x2]) = [x1 − x2, x2 + 1, 3x1 − 2x2]
1
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• This mapping is not linear since, e.g., if v = [1, 1]

T (v) = [0, 2, 1]

T (2v) = T ([2, 2]) = [0, 3, 2] 6= [0, 4, 2] = 2T (v)

So the mapping does not preserve scalar multiplication. �

2. For each of the following, assume T is a linear transformation, from the data given, compute the specified
value.

(a) Given T ([1, 0]) = [3,−1], and T ([0, 1]) = [−2, 5], find T ([4,−6]).

• Because linear transformations preserve scalar multiplication and vector addition, they also preserve
linear combinations:

T (c1v1 + c2v2) = c1T (v1) + c2T (v2)

Now take e1 = [1, 0] and e2 = [0, 1]. Then

T ([4,−6]) = T (4e1 − 6e2)

= 4T (e1)− 6T (e2)

= 4 [3,−1]− 6 [−2, 5]

= [12 + 12,−4− 30]

= [24,−34]

�

(b) Given T ([1, 0, 0]) = [3, 1, 2], T ([0, 1, 0]) = [2,−1, 4], and T ([0, 0, 1]) = [6, 0, 1], find T ([2,−5, 1]).

• As in Part (a), we set e1 = [1, 0, 0], e2 = [0, 1, 0], and e3 = [0, 0, 1] and then compute

T ([2,−5, 1]) = T (2e1 − 5e2 + e3)

= 2T (e1)− 5T (e2) + T (e3)

= 2 [3, 1, 2]− 5 [2,−1, 4] + [6, 0, 1]

= [6− 10 + 6, 2 + 5 + 0, 4− 20 + 1]

= [2, 7,−15]

�

3. Find the standard matrix representations of the following linear transformations.

(a) T : R2 → R2 : T ([x1, x2]) = [x1 + x2T , x1 − 3x2]

• The standard matrix representations are computed by computing the action of the linear transfor-
mation T on the standard basis vectors, and then using results as the columns of the corresponding
matrix. For the case at hand we have

e1 = [1, 0] ⇒ T (e1) = [1 + 0, 1− 3(0)] = [1, 1]

e2 = [0, 1] ⇒ T (e2) = [0 + 1, 0− 3(1)] = [1,−3]

So the matrix corresponding to T is [
1 1
1 −3

]
�

(b) T : R3 → R2 : T ([x1, x2, x3]) = [x1 + x2 + x3, x1 + x2, x1]
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• We proceed as in Part (a).

e1 = [1, 0, 0] ⇒ T (e1) = [1 + 0 + 0, 1 + 0, 1] = [1, 1, 1]

e2 = [0, 1, 0] ⇒ T (e2) = [0 + 1 + 0, 0 + 1, 0] = [1, 1, 0]

e3 = [0, 0, 1] ⇒ T (e3) = [0 + 0 + 1, 0 + 0, 0] = [1, 0, 0]

So the matrix corresponding to T is  1 1 1
1 1 0
1 0 0


�

(c) T : R3 → R2 : T ([x 1, x2, x3]) = [x1 + x2 + x3, 2x1 + 2x2 + 2x3]

• Proceeding as in Part (a)

AT =

[
1 1 1
2 2 2

]
4. For each of the linear transformations T : Rm → Rn in Problem 3, determine

Range (T ) := {y ∈ Rn | y = T (x) for some x ∈ Rm}
and

Kernel (T ) := {x ∈ Rm | T (x) = 0Rn}

(a)

• We have

Range (T ) = ColSp (AT ) = ColSp

([
1 1
1 −3

])
Kernel (T ) = NullSp (AT ) = solution set of ATx = 0

AT row reduces to the Reduced Row Echelon Form[
1 0
0 1

]
Since each column of this row echelon form contains a pivot, each column of AT is a basis vector
for the column space of AT . Thus,

Range (T ) = ColSp (AT ) = span

([
1
1

]
,

[
1
−3

])
From the Reduced Row Echelon Form, we can also read of the solution set of ATx = 0. We must
have

x1 = 0
x2 = 0

}
⇒ x =

[
0
0

]
Therefore,

Ker (T ) = NullSp (At) =

{[
0
0

]}
(b)

• We proceed as in Part (a). The matrix AT row reduces to a R.R.E.F.

AT =

 1 1 1
1 1 0
1 0 0

→
 1 0 0

0 1 0
0 0 1
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Each column of the R.R.E.F. contains a pivot, so each of the columns of AT is a basis vector for
the column space of AT and

Range (T ) = ColSp (AT ) = span

 1
1
1

 ,
 1

1
0

 ,
 1

0
0


The solution set of ATx = 0 is

x1 = 0
x2 = 0
x3 = 0

 ⇒ Ker (T ) = NullSp (AT ) =


 0

0
0


(c)

• We proceed as in Part (a). The matrix AT row reduces to a R.R.E.F.

AT =

[
1 1 1
2 2 2

]
→

[
1 1 1
0 0 0

]
Only the first column of the R.R.E.F. contains a pivot and so

Range (T ) = ColSp (AT ) = span

([
1
2

])
The solutions of ATx = 0 can be read off the R.R.E.F. of AT :

x1 + x2 + x3 = 0
0 = 0

}
⇒ x =

 −x2 − x3x2
x3

 = x2

 −1
1
0

+ x3

 −1
0
1


Ker (T ) = NullSp (AT ) = span

 −1
1
0

 ,
 −1

0
1


5. If T : R2 → R3 is defined by T ([x1,x2]) = [2x1 + x2, x1, x1 − x2] and T ′ : R3 → R2 is defined by
T ′ ([x1, x2, x3]) = [x1 − x2 + x3, x1 + x2], find the standard matrix representation for the linear transforma-
tion T ′ ◦ T that carries R2 into R2. Find a formula for (T ′ ◦ T ) ([x1, x2]).

• The matrix representations corresponding to T and T ′ are

MT =

 2 1
1 0
1 −1

 , MT ′ =

[
1 −1 1
1 1 0

]
The matrix representation corresponding to T ′ ◦T will be given by the product of the corresponding
matrices

MT ′◦T = MT ′MT =

[
1 −1 1
1 1 0

] 2 1
1 0
1 −1

 =

[
2 0
3 1

]
Hence

(T ′ ◦ T ) (x1, x2) = [2x1, 3x1 + x2]

: �

6. Determine whether the following statements are true or false.

(a) Every linear transformation is a function.

• True. �
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(b) Every function mapping Rn to Rm is a linear transformation.

• False. In order to be a linear transformation a function f : Rn → Rm must preserve scalar multi-
plication and vector addtion. �

(c) Composition of linear transformations corresponds to multiplication of their standard matrix represen-
tations.

• True. �

(d) Function composition is associative.

• True. �

(e) An invertible linear transformation mapping Rn to itself has a unique inverse.

• True. (This follows from the corresponding theorem about invertible matrices.) �

(f) The same matrix may be the standard matrix representation for several different linear transformations.

• False. (Unless one allows more general vector spaces - but idea won’t be broached until Chapter
3.) �

(g) A linear transformation having an m × n matrix as its standard matrix representation maps Rn into
Rm.

• True. �

(h) If T and T ′ are different linear transformations mapping Rn into Rm, then we may have T (ei) = T ′ (ei)
for all standard basis vectors ei of Rn.

• False. Linear transformations are determined uniquely by their standard matrix representations. �

(i) If T and T ′ are different linear transformations mapping Rn into Rm, then we may have T (ei) = T ′ (ei)
for some standard basis vectors ei of Rn.

• True. (So long as they are not all the same.) �

(j) If B = {b1,b2, . . . ,bn} is a basis for Rn and T and T ′ are linear transformations from Rn into Rm, then
T (x) = T ′ (x) for all x ∈ Rn if and only if T (bi) = T ′ (bi) for i = 1, 2, . . . , n.

• True. �


