
Math 3013
Solutions to Problem Set 4

1. Determine whether the indicated subset is a subspace of the given Rn.

(a) W = {[r,−r] | r ∈ R} in R2

• It suffices to show that if v1 and v2 are in W then so is any linear combination of v1 and v2. Set

v1 = [r1,−r1] , v2 = [r2,−r2]

Then

c1v1 + c2v2 = c1 [r1,−r1] + c2 [r2,−r2]

= [c1r1 + c2r2,−c1r1 − c2r2]

= [(c1r1 + c2r2) ,− (c1r1 + c2r2)] ∈W

�

(b) W = {[n,m] | n and m are integers} in R2

• This subset is not closed under scalar multiplication for

[1, 1] ∈W but
√

2 [1, 1] =
[√

2,
√

2
]
/∈W

Since this subset is not closed under scalar multiplication it cannot be a subspace. �

(c) W = {[x, y, z] | x, y, z ∈ R and z = 3x + 2} in R3

• Consider two arbitrary vectors in W

v1 = [x1, y1, 3x1 + 2] , v2 = [x2, y2, 3x2 + 2]

we have

v1 − v2 = [x1 − x2, y1 − y2, 3(x1 − x2) + 0] /∈W

Since the difference of two vectors in W does not lie in W , W is not a subspace. �

(d) W = {[x, y, z] | x, y, z ∈ R and z = 1, y = 2x} in R3

• Consider two arbitrary vectors in W

v1 = [x1, 2x1, 1] , v2 = [x2, 2x2, 1]

we have

v1 − v2 = [x1 − x2, 2(x1 − x2), 0] /∈W

�

(e) W = {[2x1, 3x2, 4x3, 5x4] | xi ∈ R} in R4

• Consider two arbitrary vectors in R4

x = [x1, x2, x3, x4] , x′ = [x′
1, x

′
2, x

′
3, x

′
4]

Then the vectors

v1 = [2x1, 3x2, 4x3, 5x4] , v2 = [2x′
1, 3x

′
2, 4x

′
3, 5x

′
4]

1
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will be in W . We have

c1v1 + c2v2 = [2c1x1, 3c1x2, 4c1x3, 5c1x4] + [2c1x
′
1, 3c2x

′
2, 4c2x

′
3, 5c2x

′
4]

= [2 (c1x1 + c2x
′
1) , 3 (c1x2 + c2x

′
2) , 4 (c1x3 + c2x

′
3) , 5 (c4x1 + c2x

′
4)]

= [2x′′
1 , 3x

′′
2 , 4x

′′
3 , 5x

′′
4 ]

This vector belongs to W since

x′′ = [c1x1 + c2x
′
1, c1x2 + c2x

′
2, c1x3 + c2x

′
3, c4x1 + c2x

′
4] ∈ R4

Since an arbitrary linear combinations of two vectors in W also lies in W , W is a subspace. �

2. Prove that the line y = mx is a subspace of R2. (Hint: write the line as W = {[x,mx] | x ∈ R}.)

• It suffices to show that an arbitrary linear combinations of two vectors in W also lies in W . Set

v1 = [x1,mx1] , v2 = [x2,mx2]

Then

c1v1 + c2v2 = [c1x1 + c2x2, c1mx1 + c2mx2]

= [(c1x1 + c2x2) ,m (c1x1 + c2x2)] ∈W

Hence, W is a subspace. �

3. Find a basis for the solution set of the following homogeneous linear systems.

3x1 + x2 + x3 = 0

6x1 + 2x2 + 2x3 = 0

−9x1 − 3x2 − 3x3 = 0

• This linear system corresponds to the following augmented matrices 3 1 1
6 2 2
−9 −3 −3

∣∣∣∣∣∣
0
0
0

 R3 → R2 − 2R1

R3 → R3 + 3R1
−−−−−−−−−−−−−→

 3 1 1
0 0 0
0 0 0

∣∣∣∣∣∣
0
0
0


The latter augmented matrix corresponds to

3x1 + x2 + x3 = 0

0 = 0

0 = 0

Which is, effectively, one equation for three unknowns. Solving for x1 in terms of x2 and x3 we
obtain

x1 = −1

3
(x2 + x3)

So any vector of the form[
−1

3
x2 −

1

3
x3, x2, x3

]
= x2

[
−1

3
, 1, 0

]
+ x3

[
−1

3
, 0, 1

]
will be a solution. We conclude that

e1 =

[
−1

3
, 1, 0

]
, e2 =

[
−1

3
, 0, 1

]
will be a basis for the solution space. �

4. Give a geometric criterion for a set of two distinct nonzero vectors in Rn to be dependent.
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• If two vectors v1 and v2 are linearly dependent, then there must exist a solution of

c1v1 + c2v2 = 0

with at least one of the coefficients c1, c2 not zero. Suppose (without loss of generality) that c2 6= 0.
Then c1 can not equal zero either (otherwise we’d have c2v2 = 0 with neither c2 or v2 zero). Then
we can multiply both sides of this equation by 1/c2 to obtain

c1
c2

v1 + v2 = 0 ⇒ v2 = −c1
c2

v1

So v2 must be a non-zero scalar multiple of v1. But then, this implies that v2 is either parallel (or
anti-parallel) to v1. �

5. Find a basis for the row space of the matrix

A =

 1 3 5 7
2 0 4 2
3 2 8 7


The row space of A is the span of the row vectors {[1, 3, 5, 7] , [2.0, 4, 2] , [3, 2, 8, 7]} of A To find a basis for
the span of these vectors we arrange them as the columns of a new matrix A′

A′ =


1 2 3
3 0 2
5 4 8
7 2 7


which happens to be the transpose of our original matrix A. We now row-reduce A′.

1 2 3
3 0 2
5 4 8
7 2 7

 →


1 2 3
0 −6 −7
0 −6 −7
0 −12 −14

 →


1 2 3
0 6 7
0 0 0
0 0 0

 = H

The pivots of H are contained in the first two columns, therefore the first two columns of A′ form a basis
for the column space of A′, which is indentical to row space of our original matrix A. Thus,

{[1, 3, 5, 7] , [2, 0, 4, 2]}

is a basis for the row space of A.

6. Find a basis for the column space of the matrix

A =


2 3 1
5 2 1
1 7 2
6 −2 0


• We’ll apply the same technique used in Problem 3.

2 3 1
5 2 1
1 7 2
6 −2 0

 →

1 7 2
5 2 1
2 3 1
6 −2 0

→


1 7 2
0 −33 −9
0 −11 −3
0 −44 −12

 →


1 7 2
0 11 −3
0 0 0
0 0 0


The pivots in the row-echelon form of A are in the first two columns. Therefore, the first two
columns of A

{[2, 5, 1, 6] , [3, 2, 7,−2]}
will form a basis for the column space of A. �

7. Find a basis for the subspace spanned by the vectors [1, 2, 1, 1], [2, 1, 0,−1], [−1, 4, 3, 8], [0, 3, 2, 5] ∈ R4.
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• First we form a 4× 4 matrix A whose columns correspond to the above set of vectors.

A =


1 2 −1 0
2 1 4 3
1 0 3 2
1 −1 8 5


Now we row-reduce A to row-echelon form.

R2 → R2 − 2R1

R3 → R3 −R1

R4 → R4 −R1
−−−−−−−−−−−−−→


1 2 −1 0
0 −3 6 3
0 −2 4 2
0 −3 9 5

 R2 → − 1
3R2

R3 → R3 − 2
3R2

R4 → R4 −R2
−−−−−−−−−−−−−→


1 2 −1 0
0 1 −2 −1
0 0 0 0
0 0 3 2



R3 ↔ R4−−−−−−→


1 2 −1 0
0 1 −2 −1
0 0 3 2
0 0 0 0


The pivots of the final matrix (a row-echelon form of A) are in the first three columns. Hence, the
first three columns

{[1, 2, 1, 1], [2, 1, 0,−1], [−1, 4, 3, 8]}

of A will form a basis for the column space

ColSp(A) = span ([1, 2, 1, 1], [2, 1, 0,−1], [−1, 4, 3, 8], [0, 3, 2, 5])

�

8. Determine whether the following sets of vectors are dependent or independent.

(a) {[1, 3] , [−2,−6]} in R2.

• Let v1 = [1, 3] and v2 = [−2,−6] and Note that

2v1 + v2 = 2[1, 3] + [−2,−6] = [0, 0]

so c1 = 2 and c2 = 1 is a non-trivial solution to c1v1 + c2v2 = 0. Thus, v1 and v2 are linearly
dependent. �

(b) {[1,−4, 3] , [3,−11, 2] , [1,−3,−4]} in R3.

• Let v1 = [1,−4, 3], v2 = [3,−11, 2] and v3 = [1,−3,−4]. We shall look for non-trivial solutions of

0 = c1v1 + c2v2 + c3v3 =

= c1 [1,−4, 3] + c2 [3,−11, 2] + c3 [1,−3,−4]

= [c1 + 3c2 + c3,−4c1 − 11c2 − 3c3, 3c1 + 2c2 − 4c3]

or

c1 + 3c2 + c3 = 0(1)

−4c1 − 11c2 − 3c3 = 0

3c1 + 2c2 − 4c3 = 0

We thus examine the following augmented matrix

A =

 1 3 1
−4 −11 −3
3 2 −4

∣∣∣∣∣∣
0
0
0


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Row reducing this matrix yields

→

 1 3 1
0 1 1
0 −7 −7

∣∣∣∣∣∣
0
0
0

 →

 1 3 1
0 1 1
0 0 0

∣∣∣∣∣∣
0
0
0


Thus, the original system of equations is equivalent to a system of 2 independent equations in 3
unknowns. This means there will be infinitely many (in fact, a one-parameter family of) solutions of
(??). Hence, there are non-trivial solutions so the original set of vectors are linearly dependent. �

9. For each of the following matrices find the rank of the matrix, a basis for its row space, a basis for its
column space, and a basis for its null space.

(a)

A =

[
2 0 −3 1
3 4 2 2

]
Let us first row reduce the given matrix to row-echelon form.

→
[

1 0 − 3
2

1
2

0 1 13
8

1
8

]
≡ A′

The pivots of this matrix lie in columns 1 and 2. Therefore, first two columns of the orginal matrix A will
form a basis for the column space of A.

ColSp (A) = span ([2, 3] , [0, 4])

The non-zero rows of the row reduced form A′ of A will be basis for the row space of A. Hence,

RowSp (A) = span

([
1, 0,

−3

2
,

1

2

]
,

[
0, 1,

13

8
,

1

8

])
The null space of A is the solution set of Ax = 0, which coincides with the solution set of A′x = 0, i.e. the
solution set of

x1 − 3
2x3 + 1

2x4 = 0
x2 + 13

8 x3 + 1
8x4 = 0

⇒ x1 = 3
2x3 − 1

2x4

x2 = − 13
8 x3 − 1

8x4

⇒ x =


3
2x3 − 1

2x4

− 13
8 x3 − 1

8x4

x3

x4

 = x3


3
2
− 13

8
1
0

+ x4


− 1

2
− 1

8
0
1



⇒ x ∈ span




3
2
− 13

8
1
0

 ,


− 1

2
− 1

8
0
1




so the vectors
{[

3
2 ,−

13
8 , 1, 0

]
,
[
− 1

2 ,−
1
8 , 0, 1

]}
form a basis for the null space of A. Finally,

rank (A) = dim (ColSp (A)) = dim (RowSp (A)) = 2

(b)

A =


0 6 6 3
1 2 1 1
4 1 −3 4
1 3 2 0


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• We proceed as in Part (a). The matrix A is row equivalent to the following matrix in row-echelon
form

A′ =


1 0 −1 0
0 1 1 0
0 0 0 1
0 0 0 0


Only third column of A′ lacks a pivot; so the first, second and fourth columns of A will provide a
basis for the column space of A. The matrix A′ has three non-zero rows and these will provide a
basis for the row space of A. Finally, the solution of Ax = 0 will be

x1 − x3 = 0
x2 + x3 = 0

x4 = 0
0 = 0

 =⇒ x =


x3

−x3

x3

0

 = x3


1
−1
1
0


so

basis for ColSp (A) =




0
1
4
1

 ,


6
2
1
3

 ,


3
1
4
0




basis for RowSp (A) = {[1, 0,−1, 0] , [0, 1, 1, 0] , [0, 0, 0, 1]}

basis for NullSp (A) =




1
−1
1
0




�

(c)

A =

 0 1 2 1
2 1 0 2
0 2 1 1


• This matrix row-reduces to

H =

 2 1 0 2
0 1 2 1
0 0 −3 −1


The pivots of H lie in the first three columns. Therefore, the first three columns of A will be a
basis for the column space of A. Each row of H is non-zero; therefore, each row of H will be a
basis vector for the row space of A. The solution set of Ax = 0 coincides with the solution set of
Hx = 0, or

2x1 + x2 + 2x4 = 0
x2 + 2x3 + x4 = 0
−3x3 − x4 = 0

⇒
x1 = − 5

6x4

x2 = − 1
3x4

x3 = − 1
3x4

So every solution is a vector of the form

x =


− 5

6x4

− 1
3x4

− 1
3x4

x4

 = x4


− 5

6
− 1

3
− 1

3
1

 ∈ span



− 5

6
− 1

3
− 1

3
1




Thus,
{[
− 5

6 ,−
1
3 ,−

1
3 , 1
]}

is a basis for the null space of A. The rank of A is equal to the number
of basis vectors for the column space of A, which is 3. �


