
Math 3013
SOLUTIONS TO SAMPLE SECOND EXAM

1. Write down the formal definitions of the following notions:

(a) a linear transformation from Rm to Rn

• A linear transformation from Rm to Rn is a function T : Rm → Rn such that

T (x1 + x2) = T (x1) + T (x2) for all x1,x2 ∈ Rm

T (λx) = λT (x) for all λ ∈ R and all x ∈ Rm

(b) the range of a linear transfomation T : Rm → Rn

• The range of a linear transformation T : Rm → Rn is the set

Range (T ) = {y ∈ Rn | y = T (x) for some x ∈ Rm} ⊂ Rn

(c) the kernel of a linear transformation T : Rm → Rn

• The kernel of a linear transformation T : Rm → Rn is the set

Ker (T ) = {x ∈ Rm | T (x) = 0} ⊂ Rm

2. Consider the following mapping: T : R3 → R2 : T ([x1, x2, x3]) = [x2, x1 − x3] . Show that T is a linear
transformation.

•
T (λ [x1, x2, x3]) = T ([λx1, λx2, λx3]) = [λx2, λx1 − λx3] = λ [x2, x1 − x3] = λT ([x1, x2, x3]) ⇒ T (λx) = λT (x)

T (x + x′) = T ([x1 + x′1, x2 + x′2, x3 + x′3]) = [x2 + x′2, (x1 + x′1)− (x3 + x′3)] = [x2, x1 − x3]+[x′2, x
′
1 − x′3] = T (x)+T (x′)

Since T preserves scalar multiplication and vector addition, T is a linear transformation. �

3. Suppose T is the linear transformation from R3 to R4 given by

T ([x1, x2, x3]) = [x1 + x2 , −x1 + x3 , x2 + x3 , 0]

(a) Find the matrix AT such that T (x) = Ax for all x ∈ R3.

• We first calculate the action of T on the standard basis vectors for the domain R3 :

T (e1) = T ([1, 0, 0]) = [1,−1, 0, 0]

T (e2) = T ([0, 1, 0]) = [1, 0, 1, 0]

T (e3) = T ([0, 0, 1]) = [0, 1, 1, 0]

Converting these to columns gives us the matrix AT

AT =

 ↑ ↑ ↑
T (e1) T (e2) T (e3)
↓ ↓ ↓

 =


1 1 0
−1 0 1
0 1 1
0 0 0


(b) Find a basis for the range of T

• The range of T is equivalent to the column space of AT . To find the latter we first row reduce
AT to reduced row echelon form:

1 1 0
−1 0 1
0 1 1
0 0 0

 row reduction−−−−−−−−−−−−−→


1 0 −1
0 1 1
0 0 0
0 0 0


1
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Since we only have pivots in the first two columns of the row echelon form, the first two columns
of AT will provide a basis for the column space of AT , and so also (once reinterpreted as vectors
in R4) a basis for the range of T :

basis for ColSp (AT ) =




1
−1
0
0

 ,


1
0
1
0


 ⇒ basis for Range (T ) = {[1,−1, 0, 0] , [1, 0, 1, 0]}

(c) Find a basis for the kernel of T .

• The kernel of T will correspond to the null space of the matrix AT (i.e., the solution set of
ATx = 0). Since we have already row reduced AT to a reduced row echelon form in part (b)
above, we can use that RREF for AT to determine a basis for the null space of AT :

NullSp (AT ) = NullSp


1 0 −1
0 1 1
0 0 0
0 0 0

 = solution set of

x1 − x3 = 0
x2 + x3 = 0

0 = 0
0 = 0


Since the third column of the RREF does not contain a pivot, x3 is to be regarded as a free
parameter. Writing the general solution vector in terms of the free parameter we get

x =

 x3
−x3
x3

 = x3

 1
−1
1


We can now conclude

basis for NullSp (At) =

 1
−1
1

 ⇒ basis for Ker (T ) = {[1,−1, 1]}

4. Compute the following determinants by the indicated method

(a) det


3 3 0 2
0 2 0 1
1 1 2 2
0 0 0 1

 via row reduction

• We have

det


3 3 0 2
0 2 0 1
1 1 2 2
0 0 0 1

 R3 ←→ R1−−−−−−−−−−−→ − det


1 1 2 2
0 2 0 1
3 3 0 2
0 0 0 1



R3 → R3 − 3R1−−−−−−−−−−−−−−−→ − det


1 1 2 2
0 2 0 1
0 0 −6 4
0 0 0 1


= − (1) (2) (−6) (1)

= 12

(the sign flip because we interchanged rows)

(b) det

 1 −1 1
0 0 2
1 1 1

 via a cofactor expansion



3

• Cofactor expansion along the second row:

det

 1 −1 1
0 0 2
1 1 1

 = (0) (−1)
2+1

det

(
−1 1
1 1

)
+ (0) (−1)

2+1
det

(
1 1
1 1

)
+ (2) (−1)

2+3
det

(
1 −1
1 1

)
= 0 + 0 + (−2) (2)

= 4

5. For each of the matrices A below

• Find the characteristic polynomial pA (λ) of A
• Find the eigenvalues of A
• Find the eigenvectors of A
• Determine the both algebraic muliplicites and geometric multiplicity of each eigenvalue

(a) A =

(
1 2
2 1

)
• We have

pA (λ) = det (A− λI) = det

(
1− λ 2

2 1− λ

)
= (1− λ)

2 − 4

= λ2 − 2λ+ 1− 4 = λ2 − 2λ− 3

= (λ− 3) (λ+ 1)

The eigenvalues of A are the roots of pA (λ) = 0. These are obviously

λ = 3, 1

We’ll now find the corresponding eigenvectors:

λ = 3 : we need to find a basis forNullSp (A− 3I) = NullSp

(
−2 2
2 −2

)
= NullSp

(
1 −1
0 0

)
=

span

([
1
1

])
. Thus,

3-eigenspace = span

([
1
1

])
λ = −1 : we need to find a basis forNullSp (A + I)) = NullSp

(
2 2
2 2

)
= NullSp

(
1 1
0 0

)
=

span

([
−1
1

])
. Thus,

−1-eigenspace = span

([
−1
1

])
Since pA (λ) has exactly one factor of (λ− 3) and exactly one factor of (λ+ 1), the algebraic

multiplicities of both eigenvalues is 1.
Since both the λ = 3 and λ = −1 eigenspaces have exactly one basis vector, the geometric

multiplicities of both eigenvalues is also 1.

(b) A =

 1 1 1
0 1 1
0 0 1


• The characteristic polynomial is

pA (λ) = det (A− λI) = (λ− 1)
3

We thus have only one eigenvalue λ = 1. Note that it has algebraic multiplicity 3.
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To find a basis for corresponding eigenspace we find a basis for

NullSp (AT − I) = NullSp

 0 1 1
0 0 1
0 0 0

 = NullSp

 0 1 0
0 0 1
0 0 0


Evidently, the null space will consist of solution vectors of the form

 0
0
x3

 ∈ span
 0

0
1

.

We thus have

1-eigenspace = span

 0
0
1


The geometric multiplicity of λ = 1 is 1 since we have only one basis vector for the 1-eigenspace.


