Math 3013 SAMPLE FIRST EXAM

1. Let

$$\mathbf{B} = \begin{bmatrix} 1 & 0 \\ 2 & -1 \\ 3 & 1 \end{bmatrix} \quad , \quad \mathbf{C} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$$

Compute the matrix product ${\bf B}{\bf A}$

2. For each of the following augmented matrices, indicate

- the number of equations and the number of variables in the corresponding linear system
- whether or not the corresponding linear system has a solution
- if the corresponding linear system does have a solution, the number of free variables in the solution.

Hint: note that these augmented matrices are already in row echelon form.

	[1	0	1	2	1]
(-)	0	1	0	1	2
(a)	0	0	0	1	-1
	0	0	0	0	0
		0	0	0	

	[1	0	1	2	1]
(b)	0	2	0	1	2
	0	0	0	0	$\left -1 \right $

(c)
$$\begin{bmatrix} 1 & 0 & 0 & | & 3\\ 0 & 1 & 1 & | & 2\\ 0 & 0 & 1 & | & -1\\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

3. (10 pts) Consider the following linear system

Write down the corresponding augmented matrix and row reduce it to row-echelon form.

4. Row reduce the following augmented matrix to **reduced** row-echelon form.

	2	2	4	6	2	2
[A b] _	0	0	3	6	6	3
$[\mathbf{A} \mid \mathbf{D}] =$	0	0	0	0	-2	2
	0	0	0	0	0	0

5. Suppose the augmented matrix below is the Reduced Row Echelon Form of an augmented matrix of a linear system. Display the solution of the linear system as a hyperplane (within the space of variables).

6. (10 pts) Compute the inverse of

	1	1	1]
$\mathbf{A} =$	2	2	1
	1	0	3

- 7. Write down precise definitions for the following terms
- (a) Subspace of \mathbb{R}^n :

(b) **Basis of a Subspace**:

- (c) Linearly Independent Set of Vectors:
- 8. Consider the matrix

$$\mathbf{A} = \left(\begin{array}{rrrr} 1 & 2 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ -1 & -1 & 0 & 0 \end{array}\right)$$

Find bases for

- (a) the row space, $RowSp(\mathbf{A})$, of \mathbf{A}
- (b) the column space, $ColSp(\mathbf{A})$, of \mathbf{A}
- (c) the null space, $NullSp(\mathbf{A})$, of \mathbf{A}