LECTURE 17

The Gram-Schmidt Algorithm

In the last lecture I showed how one could break a vector \mathbf{v} up into two orthogonal components; with one component lying in a given subspace W and another component lying in the subspace W^{\perp} that is orthogonal to W. The procedure was to

- choose a basis $B_W = {\mathbf{b}_1, \dots, \mathbf{b}_k}$ for W
- find a basis $B_{W^{\perp}} = {\mathbf{b}_{k+1}, \dots, \mathbf{b}_n}$ for W^{\perp}
- combine B_W with $B_{W^{\perp}}$ to form a basis $B = {\mathbf{b}_1, \ldots, \mathbf{b}_n}$ for \mathbb{R}^n
- find the coordinate vector \mathbf{v}_B of \mathbf{v} with respect to B and then throw away the components along the vectors $\{\mathbf{b}_{k+1}, \ldots, \mathbf{b}_n\}$

Today we develop a more systematic approach that

THEOREM 17.1. Let $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ be a set of mutually orthogonal non-zero vectors. Then the vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are linearly independent.

Proof.

Suppose

(1) $c_1 \mathbf{v}_1 + \dots + c_k \mathbf{v}_k = \mathbf{0}$

Then for each $i = 1, \ldots, k$ we have

$$0 = \mathbf{0} \cdot \mathbf{v}_i = c_1 \mathbf{v}_i \cdot \mathbf{v}_1 + c_2 \mathbf{v}_i \cdot \mathbf{v}_2 + \dots + c_i \mathbf{v}_i \cdot \mathbf{v}_i + \dots + c_k \mathbf{v}_i \cdot \mathbf{v}_k = c_i \|\mathbf{v}_i\|^2 \implies c_i = 0$$

So we cannot satisfy (1) without each $c_i = 0$. Hence the vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are linearly independent.

COROLLARY 17.2. Any set of n mutually orthogonal non-zero vectors will be a basis for \mathbb{R}^n .

Now suppose $B = {\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_k}$ is a basis for some subspace W of \mathbb{R}^n . From this basis we can systematically construct an orthogonal basis for W; that is a basis for which all the vectors are orthogonal.

Before we get started, let's recall that given any vectors \mathbf{a} and \mathbf{v} we have a decomposition of \mathbf{v}

(2)
$$\mathbf{v} = \mathbf{v}_{\mathbf{a}} + \mathbf{v}_{\mathbf{a}^{\perp}}$$

where $\mathbf{v}_{\mathbf{a}}$ is the component of \mathbf{v} along the direction of \mathbf{a} and $\mathbf{v}_{\mathbf{a}^{\perp}}$ is the component of \mathbf{v} along a direction perpendicular to \mathbf{v} . Moreover, we have the following formula for $\mathbf{v}_{\mathbf{a}}$

(3)
$$\mathbf{v}_{\mathbf{a}} = \frac{\mathbf{a} \cdot \mathbf{v}}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a}$$

Combining (2) and (3) we have a formula for $\mathbf{v}_{\mathbf{a}^{\perp}}$ as well

$$\mathbf{v}_{\mathbf{a}^{\perp}} = \mathbf{v} - \frac{\mathbf{a} \cdot \mathbf{v}}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a}$$

$$\mathbf{a} \cdot \mathbf{v}_{\mathbf{a}^{\perp}} = \mathbf{a} \cdot \mathbf{v} + \frac{\mathbf{a} \cdot \mathbf{v}}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \cdot \mathbf{a} = 0$$

as expected.

Okay, here's how we generate an orthogonal basis. Set

 $\mathbf{o}_1 = \mathbf{b}_1$

and then

$$\mathbf{o}_2 = \mathbf{b}_2 - \frac{\mathbf{o}_1 \cdot \mathbf{b}_2}{\mathbf{o}_1 \cdot \mathbf{o}_1} \mathbf{o}_1$$

By construction, \mathbf{o}_1 and \mathbf{o}_2 are perpendicular, non-zero and linearly independent. Now let

$$\mathbf{o}_3 = \mathbf{b}_3 - \frac{\mathbf{o}_1 \cdot \mathbf{b}_3}{\mathbf{o}_1 \cdot \mathbf{o}_1} \mathbf{o}_1 - \frac{\mathbf{o}_2 \cdot \mathbf{b}_2}{\mathbf{o}_2 \cdot \mathbf{o}_2} \mathbf{o}_2$$

The vector \mathbf{o}_3 is non-zero because it is a linear combination of the basis vectors \mathbf{b}_1 , \mathbf{b}_2 and \mathbf{b}_3 with at least one non-zero coefficient. Moreover

$$\mathbf{o}_1 \cdot \mathbf{o}_3 = \mathbf{o}_1 \cdot \mathbf{b}_3 - \frac{\mathbf{o}_1 \cdot \mathbf{b}_3}{\mathbf{o}_1 \cdot \mathbf{o}_1} \mathbf{o}_1 \cdot \mathbf{o}_1 - \frac{\mathbf{o}_2 \cdot \mathbf{b}_2}{\mathbf{o}_2 \cdot \mathbf{o}_2} \mathbf{o}_1 \cdot \mathbf{o}_2 = \mathbf{o}_1 \cdot \mathbf{b}_3 - \mathbf{o}_1 \cdot \mathbf{b}_3 = 0$$

$$\mathbf{o}_2 \cdot \mathbf{o}_3 = \mathbf{o}_2 \cdot \mathbf{b}_3 - \frac{\mathbf{o}_1 \cdot \mathbf{b}_3}{\mathbf{o}_1 \cdot \mathbf{o}_1} \mathbf{o}_2 \cdot \mathbf{o}_1 - \frac{\mathbf{o}_2 \cdot \mathbf{b}_2}{\mathbf{o}_2 \cdot \mathbf{o}_2} \mathbf{o}_2 \cdot \mathbf{o}_2 = \mathbf{o}_2 \cdot \mathbf{b}_3 - \mathbf{o}_2 \cdot \mathbf{b}_3 = 0$$

and so $\{\mathbf{o}_1, \mathbf{o}_2, \mathbf{o}_3\}$ are mutually perpendicular non-zero vectors, and so linearly independent.

We can continue in this fashion to construct more and more linearly independent orthogonal vectors. For example,

$$\mathbf{o}_4 = \mathbf{b}_4 - \frac{\mathbf{o}_1 \cdot \mathbf{b}_4}{\mathbf{o}_1 \cdot \mathbf{o}_1} \mathbf{o}_1 - \frac{\mathbf{o}_2 \cdot \mathbf{b}_4}{\mathbf{o}_2 \cdot \mathbf{o}_2} \mathbf{o}_2 - \frac{\mathbf{o}_3 \cdot \mathbf{b}_4}{\mathbf{o}_3 \cdot \mathbf{o}_3} \mathbf{o}_3$$

In the end, when we reach \mathbf{b}_k this process terminates with

$$\mathbf{o}_k = \mathbf{b}_k - \frac{\mathbf{o}_1 \cdot \mathbf{b}_k}{\mathbf{o}_1 \cdot \mathbf{o}_1} \mathbf{o}_1 - \frac{\mathbf{o}_2 \cdot \mathbf{b}_k}{\mathbf{o}_2 \cdot \mathbf{o}_2} \mathbf{o}_2 - \dots - \frac{\mathbf{o}_{k-1} \cdot \mathbf{b}_k}{\mathbf{o}_{k-1} \cdot \mathbf{o}_{k-1}} \mathbf{o}_{k-1}$$

and we arrive at a set of k linearly independent, mutually orthogonal vectors $\{\mathbf{o}_1, \mathbf{o}_2, \dots, \mathbf{o}_k\}$

The basis $\{\mathbf{o}_1, \dots, \mathbf{o}_k\}$ obtained by the above algorithm, however, is not an **orthonormal basis**. That is to say, although mutually orthogonal by construction, the vectors \mathbf{o}_i do not necessarily have the length 1. In fact, it's rather unlikely that $\|\mathbf{o}_i\| = 1$. But there is an easy fix for this. All we have to do is divide each of the orthogonal basis vectors \mathbf{o}_i by their lengths $\|\mathbf{o}_i\| = \sqrt{\mathbf{o}_i \cdot \mathbf{o}_i}$ to get a set of k, mutually orthogonal, linearly independent vectors, all of length 1 :

$$\mathbf{o}_{1} \longrightarrow \mathbf{n}_{1} = \frac{1}{\sqrt{\mathbf{o}_{1} \cdot \mathbf{o}_{1}}} \mathbf{o}_{1}$$
$$\mathbf{o}_{2} \longrightarrow \mathbf{n}_{2} = \frac{1}{\sqrt{\mathbf{o}_{2} \cdot \mathbf{o}_{2}}} \mathbf{o}_{2}$$
$$\vdots$$
$$\mathbf{o}_{k} \longrightarrow \mathbf{n}_{k} = \frac{1}{\sqrt{\mathbf{o}_{k} \cdot \mathbf{o}_{k}}} \mathbf{o}_{k}$$

EXAMPLE 17.4. Find a orthonormal basis for the subspace

$$W = span([1, -1, 1, 0, 0], [-1, 0, 0, 0, 1], [0, 0, 1, 0, 1])$$

of \mathbb{R}^5 .

• First we need a basis for W.

$$\begin{bmatrix} 1 & -1 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix}$$

This last matrix is in row echelon form with no non-zero rows. From this short calculation we see that the original three vectors are linearly independent and so will constitute a basis for W. We can thus use $B = {\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3}$ with

$$\begin{aligned} \mathbf{b}_1 &= & [1, -1, 1, 0, 0] \\ \mathbf{b}_2 &= & [-1, 0, 0, 0, 1] \\ \mathbf{b}_3 &= & [0, 0, 1, 0, 1] \end{aligned}$$

as an initial basis to start the Gram-Schmidt orthogonalization process.

Thus, we set

$$\mathbf{o}_1 = \mathbf{b}_1 = [1, -1, 1, 0, 0]$$

$$\implies \|\mathbf{o}_1\|^2 = 3$$

$$\implies \mathbf{n}_1 = \left[\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, 0, 0\right]$$

.

Next we compute \mathbf{o}_2 ,

$$\mathbf{o}_{2} = \mathbf{b}_{2} - \frac{\mathbf{o}_{1} \cdot \mathbf{b}_{2}}{\mathbf{o}_{1} \cdot \mathbf{o}_{1}} \mathbf{o}_{1}$$

= $[-1, 0, 0, 0, 1] - \frac{(-1)}{3} [1, -1, 1, 0, 0]$
= $\left[-\frac{2}{3}, -\frac{1}{3}, \frac{1}{3}, 0, 1 \right]$

We have

$$\|\mathbf{o}_2\|^2 = \frac{4}{9} + \frac{1}{9} + \frac{1}{9} + 1 = \frac{5}{3}$$

$$\implies \mathbf{n}_2 = \sqrt{\frac{3}{5}} \left[-\frac{2}{3}, -\frac{1}{3}, \frac{1}{3}, 0, 1 \right]$$

Finally,

$$\mathbf{o}_{3} = \mathbf{b}_{3} - \frac{\mathbf{o}_{1} \cdot \mathbf{b}_{3}}{\mathbf{o}_{1} \cdot \mathbf{o}_{1}} \mathbf{o}_{1} - \frac{\mathbf{o}_{2} \cdot \mathbf{b}_{2}}{\mathbf{o}_{2} \cdot \mathbf{o}_{2}} \mathbf{o}_{2}$$

= $[0, 0, 1, 0, 1] - \frac{(1)}{(3)} [[1, -1, 1, 0, 0]] - \frac{(1)}{(2)} [-1, 0, 0, 0, 1]$
= $\left[\frac{1}{6}, \frac{1}{3}, \frac{2}{3}, 0, \frac{1}{2}\right]$

and

 \mathbf{so}

$$\|\mathbf{o}_3\|^2 = \frac{1}{36} + \frac{1}{9} + \frac{4}{9} + \frac{1}{4} = \frac{5}{6}$$
$$\mathbf{n}_3 = \sqrt{\frac{6}{5}} \left[\frac{1}{6}, \frac{1}{3}, \frac{2}{3}, 0, \frac{1}{2}\right]$$

Thus,

$$B' = \left\{ \left[\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, 0, 0 \right] \cdot \sqrt{\frac{3}{5}} \left[-\frac{2}{3}, -\frac{1}{3}, \frac{1}{3}, 0, 1 \right], \sqrt{\frac{6}{5}} \left[\frac{1}{6}, \frac{1}{3}, \frac{2}{3}, 0, \frac{1}{2} \right] \right\}$$

will be an orthonormal basis for W.