LECTURE 17

The Gram-Schmidt Algorithm

In the last lecture I showed how one could break a vector v up into two orthogonal components; with one component lying in a given subspace W and another component lying in the subspace W^\perp that is orthogonal to W. The procedure was to

- choose a basis $B_W = \{b_1, \ldots, b_k\}$ for W
- find a basis $B_{W^\perp} = \{b_{k+1}, \ldots, b_n\}$ for W^\perp
- combine B_W with B_{W^\perp} to form a basis $B = \{b_1, \ldots, b_n\}$ for \mathbb{R}^n
- find the coordinate vector v_B of v with respect to B and then throw away the components along the vectors $\{b_{k+1}, \ldots, b_n\}$

Today we develop a more systematic approach that

Theorem 17.1. Let $\{v_1, \ldots, v_k\}$ be a set of mutually orthogonal non-zero vectors. Then the vectors v_1, \ldots, v_k are linearly independent.

Proof.

Suppose

$$c_1v_1 + \cdots + c_kv_k = 0$$

Then for each $i = 1, \ldots, k$ we have

$$0 = 0 \cdot v_i = c_1v_i \cdot v_i + c_2v_i \cdot v_2 + \cdots + c_kv_i \cdot v_k = c_i \|v_i\|^2 \implies c_i = 0$$

So we cannot satisfy (1) without each $c_i = 0$. Hence the vectors v_1, \ldots, v_k are linearly independent.

Corollary 17.2. Any set of n mutually orthogonal non-zero vectors will be a basis for \mathbb{R}^n.

Now suppose $B = \{b_1, b_2, \ldots, b_k\}$ is a basis for some subspace W of \mathbb{R}^n. From this basis we can systematically construct an orthogonal basis for W; that is a basis for which all the vectors are orthogonal.

Before we get started, let’s recall that given any vectors a and v we have a decomposition of v

(2) $$v = v_{a} + v_{a^\perp}$$

where v_{a} is the component of v along the direction of a and v_{a^\perp} is the component of v along a direction perpendicular to v. Moreover, we have the following formula for v_{a}

(3) $$v_{a} = \frac{a \cdot v}{a \cdot a}$$

Combining (2) and (3) we have a formula for v_{a^\perp} as well

$$v_{a^\perp} = v - \frac{a \cdot v}{a \cdot a}$$
Remark 17.3. Note that if \(\mathbf{a} \) and \(\mathbf{v} \) are linearly independent then \(\mathbf{v}_{a^\perp} \neq \mathbf{0} \) : because it is a linear combination of two linearly independent vectors with at least one coefficient, the coefficient of \(\mathbf{v} \), non-zero. Note also that from (3)
\[
\mathbf{a} \cdot \mathbf{v}_{a^\perp} = \mathbf{a} \cdot \mathbf{v} + \frac{\mathbf{a} \cdot \mathbf{v}}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} = 0
\]
as expected.

Okay, here’s how we generate an orthogonal basis. Set
\[
\mathbf{o}_1 = \mathbf{b}_1
\]
and then
\[
\mathbf{o}_2 = \mathbf{b}_2 - \frac{\mathbf{b}_2 \cdot \mathbf{b}_1}{\mathbf{b}_1 \cdot \mathbf{b}_1} \mathbf{b}_1
\]
By construction, \(\mathbf{o}_1 \) and \(\mathbf{o}_2 \) are perpendicular, non-zero and linearly independent. Now let
\[
\mathbf{o}_3 = \mathbf{b}_3 - \frac{\mathbf{b}_3 \cdot \mathbf{b}_1}{\mathbf{b}_1 \cdot \mathbf{b}_1} \mathbf{b}_1 - \frac{\mathbf{b}_3 \cdot \mathbf{b}_2}{\mathbf{b}_2 \cdot \mathbf{b}_2} \mathbf{b}_2
\]
The vector \(\mathbf{o}_3 \) is non-zero because it is a linear combination of the basis vectors \(\mathbf{b}_1, \mathbf{b}_2 \) and \(\mathbf{b}_3 \) with at least one non-zero coefficient. Moreover
\[
\mathbf{o}_1 \cdot \mathbf{o}_3 = \mathbf{b}_1 \cdot \mathbf{b}_3 - \frac{\mathbf{b}_1 \cdot \mathbf{b}_3}{\mathbf{b}_1 \cdot \mathbf{b}_1} \mathbf{b}_1 \cdot \mathbf{b}_1 - \frac{\mathbf{b}_2 \cdot \mathbf{b}_3}{\mathbf{b}_2 \cdot \mathbf{b}_2} \mathbf{b}_2 \cdot \mathbf{b}_2 = \mathbf{b}_1 \cdot \mathbf{b}_3 - \mathbf{b}_1 \cdot \mathbf{b}_3 = 0
\]
\[
\mathbf{o}_2 \cdot \mathbf{o}_3 = \mathbf{b}_2 \cdot \mathbf{b}_3 - \frac{\mathbf{b}_1 \cdot \mathbf{b}_3}{\mathbf{b}_1 \cdot \mathbf{b}_1} \mathbf{b}_1 \cdot \mathbf{b}_2 - \frac{\mathbf{b}_2 \cdot \mathbf{b}_3}{\mathbf{b}_2 \cdot \mathbf{b}_2} \mathbf{b}_2 \cdot \mathbf{b}_2 = \mathbf{b}_2 \cdot \mathbf{b}_3 - \mathbf{b}_2 \cdot \mathbf{b}_3 = 0
\]
and so \(\{ \mathbf{o}_1, \mathbf{o}_2, \mathbf{o}_3 \} \) are mutually perpendicular non-zero vectors, and so linearly independent.

We can continue in this fashion to construct more and more linearly independent orthogonal vectors. For example,
\[
\mathbf{o}_4 = \mathbf{b}_4 - \frac{\mathbf{b}_4 \cdot \mathbf{b}_1}{\mathbf{b}_1 \cdot \mathbf{b}_1} \mathbf{b}_1 - \frac{\mathbf{b}_4 \cdot \mathbf{b}_2}{\mathbf{b}_2 \cdot \mathbf{b}_2} \mathbf{b}_2 - \frac{\mathbf{b}_4 \cdot \mathbf{b}_3}{\mathbf{b}_3 \cdot \mathbf{b}_3} \mathbf{b}_3
\]
In the end, when we reach \(\mathbf{b}_k \) this process terminates with
\[
\mathbf{o}_k = \mathbf{b}_k - \frac{\mathbf{b}_k \cdot \mathbf{b}_1}{\mathbf{b}_1 \cdot \mathbf{b}_1} \mathbf{b}_1 - \frac{\mathbf{b}_k \cdot \mathbf{b}_2}{\mathbf{b}_2 \cdot \mathbf{b}_2} \mathbf{b}_2 - \cdots - \frac{\mathbf{b}_k \cdot \mathbf{b}_{k-1}}{\mathbf{b}_{k-1} \cdot \mathbf{b}_{k-1}} \mathbf{b}_{k-1}
\]
and we arrive at a set of \(k \) linearly independent, mutually orthogonal vectors \(\{ \mathbf{o}_1, \mathbf{o}_2, \ldots, \mathbf{o}_k \} \)

The basis \(\{ \mathbf{o}_1, \ldots, \mathbf{o}_k \} \) obtained by the above algorithm, however, is not an orthonormal basis. That is to say, although mutually orthogonal by construction, the vectors \(\mathbf{o}_i \) do not necessarily have the length 1. In fact, it’s rather unlikely that \(\| \mathbf{o}_i \| = 1 \). But there is an easy fix for this. All we have to do is divide each of the orthogonal basis vectors \(\mathbf{o}_i \) by their lengths \(\| \mathbf{o}_i \| = \sqrt{\mathbf{o}_i \cdot \mathbf{o}_i} \) to get a set of \(k \), mutually orthogonal, linearly independent vectors, all of length 1 :
\[
\mathbf{o}_1 \quad \rightarrow \quad \mathbf{n}_1 = \frac{\mathbf{1}}{\sqrt{\mathbf{b}_1 \cdot \mathbf{b}_1}} \mathbf{o}_1
\]
\[
\mathbf{o}_2 \quad \rightarrow \quad \mathbf{n}_2 = \frac{\mathbf{1}}{\sqrt{\mathbf{b}_2 \cdot \mathbf{b}_2}} \mathbf{o}_2
\]
\[
\vdots
\]
\[
\mathbf{o}_k \quad \rightarrow \quad \mathbf{n}_k = \frac{\mathbf{1}}{\sqrt{\mathbf{b}_k \cdot \mathbf{b}_k}} \mathbf{o}_k
\]

Example 17.4. Find an orthonormal basis for the subspace
\[
W = \text{span} ([1, -1, 1, 0, 0], [-1, 0, 0, 0, 1], [0, 0, 1, 0, 1])
\]
of \(\mathbb{R}^5 \).
17. THE GRAM-SCHMIDT ALGORITHM

- First we need a basis for W.

\[
\begin{bmatrix}
1 & -1 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1
\end{bmatrix} \rightarrow \begin{bmatrix}
1 & -1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1
\end{bmatrix}
\]

This last matrix is in row echelon form with no non-zero rows. From this short calculation we see that the original three vectors are linearly independent and so will constitute a basis for W. We can thus use $B = \{b_1, b_2, b_3\}$ with

\[
\begin{align*}
b_1 &= [1, -1, 1, 0, 0] \\
b_2 &= [-1, 0, 0, 0, 1] \\
b_3 &= [0, 0, 1, 0, 1]
\end{align*}
\]

as an initial basis to start the Gram-Schmidt orthogonalization process.

Thus, we set

\[
\begin{align*}
o_1 &= b_1 = [1, -1, 1, 0, 0] \\
\Rightarrow \|o_1\|^2 &= 3 \\
\Rightarrow n_1 &= \left[\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, 0, 0\right]
\end{align*}
\]

Next we compute o_2,

\[
\begin{align*}
o_2 &= b_2 - \frac{o_1 \cdot b_2}{o_1 \cdot o_1} o_1 \\
&= [-1, 0, 0, 0, 1] - \frac{(-1)}{3} [1, -1, 1, 0, 0] \\
&= \left[-\frac{2}{3}, -\frac{1}{3}, \frac{1}{3}, 0, 1\right]
\end{align*}
\]

We have

\[
\|o_2\|^2 = \frac{4}{9} + \frac{1}{9} + \frac{1}{9} + 1 = \frac{5}{3}
\]

\[
\Rightarrow n_2 = \sqrt{\frac{5}{3}} \left[-\frac{2}{3}, -\frac{1}{3}, \frac{1}{3}, 0, 1\right]
\]

Finally,

\[
\begin{align*}
o_3 &= b_3 - \frac{o_1 \cdot b_3}{o_1 \cdot o_1} o_1 - \frac{o_2 \cdot b_2}{o_2 \cdot o_2} o_2 \\
&= [0, 0, 1, 0, 1] - \frac{(1)}{3} [1, -1, 1, 0, 0] - \frac{(1)}{2} [-1, 0, 0, 0, 1] \\
&= \left[\frac{1}{6}, \frac{1}{3}, \frac{2}{3}, 0, \frac{1}{2}\right]
\end{align*}
\]

and

\[
\|o_3\|^2 = \frac{1}{36} + \frac{1}{9} + \frac{4}{9} + \frac{1}{4} = \frac{5}{6}
\]

so

\[
n_3 = \sqrt{\frac{6}{5}} \left[\frac{1}{6}, \frac{1}{3}, \frac{2}{3}, 0, \frac{1}{2}\right]
\]

Thus,

\[
B' = \left\{\left[\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, 0, 0\right], \sqrt{\frac{3}{5}} \left[-\frac{2}{3}, -\frac{1}{3}, -\frac{1}{3}, 0, 1\right], \sqrt{\frac{6}{5}} \left[\frac{1}{6}, \frac{1}{3}, \frac{2}{3}, 0, \frac{1}{2}\right]\right\}
\]

will be an orthonormal basis for W.