
LECTURE 6

Inverses of Square Matrices

1. Introduction

To motivate our discussion of matrix inverses, let me recall the solution of a linear equation in one variable:

(6.1) ax = b

This is achieved simply by multiplying both sides by a−1. Put another way, in more formal language, to
solve (6.1) we multiply both sides by the multiplicative inverse of a.

In the preceding lectures we have seen that, by adopting a matrix formulation, we can rewrite a linear
system consisting of m equations in n unknowns

a11x1 + a12x2 + · · ·+ a1nxn = b1(6.2)

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

am1x1 + am2x2 + · · ·+ amnxn = bm

as a matrix equation

(6.3) Ax = b

which, at least notationally, has the same form as (6.1). In fact, as a result of our fore-sighted choice of
matrix notation, we can actually solve (6.3) in the same manner as we solved (6.1) whenever we can find a
multiplicative inverse A−1 of the matrix.

However, before we try to push this analogy too far, let me point out its limitations. In the case of real
numbers, every number except 0 has a multiplicative inverse; however, it is not true that every non-zero
matrix has an inverse. In fact, in general matrices do not have inverses. For if A is an m × n matrix
then we cannot have a r × s matrix A−1 such that

A−1A = I = AA−1

unless m = n = r = s (otherwise, one of the products A−1A or AA−1 is not defined). And even when we
restrict attention to square matrices (i.e. n× n matrices), we can find non-zero matrices that do not have
inverses. For example, to find an inverse of

A =

[
0 1
0 0

]
we would need to find a matrix

A−1 =

[
a b
c d

]
such that [

1 0
0 1

]
= I = A−1A =

[
a b
c d

] [
0 1
0 0

]
=

[
0 b
0 c

]
Looking at the entries in the first column of the first row on both sides we see that this requires in particular
that 1 = 0; an obvious contradiction.
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2. Properties of Matrix Inverses

Before we actually learn how to compute matrix inverses, I shall outline some of their elementary properties.

Definition 6.1. An n×n matrix A is invertible if there exists an n×n matrix C such that AC = CA = I,
the n×n identity matrix. Such a matrix C is called an inverse of A. If an n×n matrix A is not invertible,
it is called singular.

Theorem 6.2. If an n× n matrix is invertible, then its inverse is unique.

Proof. Let C and D be matrices such that AC = I and DA = I. Then, one the one hand, we have

D(AC) = (DA)C = (I)C = C

and, on the other,

D(AC) = D(I) = D

and so

C = D

Notation 6.3. Henceforth we shall denote the unique inverse of an n× n matrix A by A−1.

Theorem 6.4. Let A and B be invertible n× n matrices. Then their product AB is also invertible and

(AB)
−1

= B−1A−1

Proof. A direct computation shows that(
B−1A−1

)
(AB) = B−1

(
A−1A

)
B

= B−1 (I)B

= B−1 (IB)

= B−1B

= I

and similarly

(AB)
(
B−1A−1

)
= I

Since matrix inverses are unique, we can conclude that AB is invertible and (AB)
−1

= B−1A−1.

3. Elementary Matrices

Before I say more about matrix inverses, let me introduce an important auxiliary idea: that of elementary
matrices.

Definition 6.5. Suppose R is an elmentary row operation (acting on n × n matrices). The elementary
matrix ER corresponding to R is the n×n matrix obtained by applying R to the n×n identity matrix In.
:

ER ≡ R (In)

Here are some examples of elementary matrices (mad from the the 2× 2 identity matrix).

(1) Suppose RR1←→R2
is the operation that interchanges the first and second row of a matrix. Then

ERR1←→R2
= RR1←→R2

(
1 0
0 1

)
=

(
0 1
1 0

)
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(2) SupposeRR2→λR2 , is the operation that replaces the second row of a matrix with its scalar multiple
by λ. Then

ERR2→λR2
= RR2→λR2

(
1 0
0 1

)
=

(
1 0
0 λ

)
(3) Suppose RR2→R2+λR1

is the operation replaces the second row of a matrix with its sum with λ
times the second row of the matrix. Then

ERR2→R2+λR1
= RR2→R2+λR1

(
1 0
0 1

)
=

(
1 0
λ 1

)
Theorem 6.6. Suppose A is an n ×m matrix and ER is the elementary matrix obtained by applying an
elementary row operation to In. Then

R (A) = ERA

(i.e, the effect of the elementary row operation R on A is the same as multiplying A from the left by the
elementary matrix ER).

Rather than prove this theorem, let me just demonstrate how this works for the three examples given above.

Let A =

(
a b c
d e f

)
.

(1) We have

RR1←→R2 (A) = RR1←→R2

(
a b c
d e f

)
=

(
d e f
a b c

)
and

ERR1←→R2
A =

(
0 1
1 0

)(
a b c
d e f

)
=

(
0 + d 0 + e 0 + f
a+ 0 b+ 0 c+ 0

)
=

(
d e f
a b c

)
and so

RR1←→R2 (A) = ERR1←→R2
A

(2) We have

RR2→λR2 (A) = RR2→λR2

(
a b c
d e f

)
=

(
a b c
λd λe λf

)
and

ERR2→λR2
A =

(
1 0
0 λ

)(
a b c
d e f

)
=

(
a+ 0 b+ 0 c+ 0

0 + λd 0 + λe 0 + λf

)
=

(
a b c
λd λe λf

)
and so

RR2→λR2
(A) = ERR2→λR2

A

(3) We have

RR2→R2+λR1
(A) = RR2→R2+λR1

(
a b c
d e f

)
=

(
a b c

d+ λa e+ λb f + λc

)
and

ERR2→R2+λR1
A =

(
1 0
λ 1

)(
a b c
d e f

)
=

(
a+ 0 b+ 0 c+ 0
λa+ d λb+ e λc+ f

)
and so

RR2→R2+λR1
(A) = ERR2→R2+λR1

A

Lemma 6.7. Every elementary matrix has an inverse, which is also an elementary matrix.
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Proof. Recall that an elementary matrix is a matrix that is obtained from an identity matrix by a single
elementary row operation.

Let E be the elementary matrix corresponding to the row operation that exchanges the ith and jth rows.
Then if exchange the the ith and jth rows again, we get back where we started; in other words we must
have

EE = I

so E is its own inverse.

Now suppose E is the elementary matrix corresponding to the rescaling of a particular row by a factor
k 6= 0, and E′ is the elementary matrix corresponding to rescaling that same row by a factor k−1. Then we
have

EE′ = I

So elementary matrices corresponding to rescalings have inverses as well.

Finally let E be the elementary matrix corresponding to replacing the jth row with its sum with k times
the ith row. This operation can be undone by replacing the jth row by its sum with −k times the ith row.
Let E′ be the elementary matrix corresponding to this latter row operation. Then we have

EE′ = I

so elementary matrices corresponding to the replacements of rows by their sums with multiples of other
rows have inverses (which are themselves elementary matrices).

Thus, every elementary matrix has an inverse and that inverse is an elementary matrix.

4. The Fundamental Theorem of Invertible Matrices

Lemma 6.8. Let A be an n × n matrix. The following statements are equivalent (if one statement is true
for A then all these statements are true for A).

(a) A is invertible.
(b) Ax = b has a unique solution for each vector b ∈ Rn.
(c) Ax = 0 has only the trivial soluion x = 0.
(d) The reduced row echelon form of A is In (the n× n identity matrix).
(e) A is a product of elementary matrices.

Proof. We’ll demonstrate the following chain of implications

(a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (e) ⇒ (a)

(a) ⇒ (b) : Suppose A is invertible, with inverse A−1. I claim x = A−1b is a solution of Ax = b.
Indeed,

A
(
A−1b

)
=
(
AA−1

)
b = Inb = b

and so A−1b is a solution. Suppose y is another solution of Ax = b. Then

Ay = b ⇒ A−1Ay = A−1b ⇒ Iny = A−1b ⇒ y = A−1b

(so y is the same solution.)

(b) ⇒ (c) : (c) follows from (b) by simply choosing b = 0, and noting that, in this case, the unique
solution stipulated by (b) is

x = A−10 = 0
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(c) ⇒ (d) : Assume (c), then the unique solution to Ax = 0 is

x =

 0
...
0

 which corresponds to the augmented matrix


1 0 · · · · · · 0 0
0 1 · · · · · · 0 0
...

. . .
...

...
0 0 · · · 1 0 0
0 0 · · · 0 1 0


for which the coefficient part (the ”A-part” the augmented matrix) is the identity matrix In. On the other
hand, since all solutions to a linear system Ax = 0 are obtainable by row reducing the augmented matrix
[A | b] to its Reduced Row Echelon Form, we can conclude that A must be row reducible to the identity
matrix.

(d) ⇒ (e) : Assume A can be row reduced to the identity matrix, there must be a sequenceR1,R2, . . . ,Rk
of elementary row operations that systematically converts A to the identity matrix In. Say,

Rk (Rk−1 (· · · (R1 (A)))) = In

However, we could also implement these same elementarty row operations by left multiplication by the
corresponding elementary matrices:

ERkERk−1
· · ·ER1

A =Rk (Rk−1 (· · · (R1 (A)))) = In

Since each elementary matrix is invertible, we can multiply this equation above by E−1R1
E−1R2

· · ·E−1Rk to get

E−1R1
E−1R2

· · ·E−1RkERkERk−1
· · ·ER1

A = E−1R1
E−1R2

· · ·E−1RkIn = E−1R1
E−1R2

· · ·E−1Rk
Now note that on the left hand side the product collapses to simply A, and thus

A = E−1R1
E−1R2

· · ·E−1Rk
is a product of elementary matrices.

(e) ⇒ (a) : Assume (e) is true and
A = ER1

· · ·ERk
is a presentation of A as a product of elementary matrices. Then because each of the matrix factor ERi is

invertible, elementary matrix (ERi)
−1

, A is also invertible and, moreover,

A−1 = (ER1
ER2

· · ·ERk)
−1

= (ERk)
−1 · · · (ER2

)
−1

(ER1
)
−1

Theorem 6.9.

Corollary 6.10. Let A and B be n× n matrices. Then AB = I if and only if BA = I.

Proof. Let A and B be n× n matrices and suppose AB = I. Consider the equation

Bx = 0 .

Multiplying this equation from the left by A we get

ABx = A0 = 0

while, on the other hand,
ABx = Inx = x

and so if Bx = 0 we must have x = 0. In view of the equivalence of statements (c) and (a) of the
Fundamental Theorem, we can conclude that B is invertible. Hence, B−1 exists and so can multiply the
equation AB = I from the right by B−1 to get

ABB−1 = IB−1 = B−1

and, on the other hand,
ABB−1 = AI = A

and so we must have
A = B−1 .
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But now
BA = BB−1 = I

which is what we sought to demonstrate.

5. Calculation of Matrix Inverses

Let us now turn to the problem of calculating the inverse of a square matrix. Suppose we start with a matrix
A and apply elementary row operations until we produce a matrix that is not only in reduced row-echelon
form, but in fact the identity matrix. This would imply that there would be a corresponding sequence {Ei}
of elementary matrices such that

EkEk−1 · · ·E2E1A = I

In other words,
A−1 = EkEk−1 · · ·E2E1

However,
EkEk−1 · · ·E2E1 = (EkEk−1 · · ·E2E1) I

So we can obtain A−1 by applying the same sequence of row operations to the identity matrix I.

This observation leads us to the following procedure.

(1) Form the augmented matrix [A | I].
(2) Apply the Gauss-Jordan method to attempt to reduce [A | I] to the form [I | C].
(3) If successful, then C = A−1. Otherwise, A−1 does not exist.

Example 6.11. Calculate the inverse of

A =

[
1 1
2 3

]

We set

[A | I] =

[
1 1
2 3

∣∣∣∣ 1 0
0 1

]
We’ll use the notation Ri → Ri+(k)Rj to indicate the elementary row operation corresponding to replacing
the ith row with its sum with k times the jth row:

R2 → R2 + (−2)R1 ⇒
[

1 1
0 1

∣∣∣∣ 1 0
−2 1

]
R1 → R1 −R2 ⇒

[
1 0
0 1

∣∣∣∣ 3 −1
−2 1

]
The matrix in the first block is now the 2× 2 unit matrix. The matrix in the second block should then be
the inverse of A. Let’s confirm this:[

1 1
2 3

] [
3 −1
−2 1

]
=

[
(1, 1) · (3,−2) (1, 1) · (−1, 1)
(2, 3) · (3,−2) (2, 3) · (−1, 1)

]
=

[
3− 2 −1 + 1
6− 6 −2 + 3

]
=

[
1 0
0 1

]
≡ I

Hence,

A−1 =

[
3 −1
−2 1

]


