Math 3013 Problem Set 9

1. Let $B_0 = \{[1, 0, 0], [0, 1, 0], [0, 0, 1]\}$ be the standard basis for \mathbb{R}^3 and let $B_1 = \{[1, 1, 1], [1, -1, 1], [1, 1, -1]\}$ be another basis for \mathbb{R}^3 .

(a) What is the change of basis matrix $\mathbf{C}_{B_1 \to B_0}$ that connects coordinate vectors with respect to B_1 to coordinate vectors with respect to B_0 ?

(b) Suppose a vector \mathbf{v} has coordinate vector $\mathbf{v}_{B_1} = [1, 2, 1]$ with respect to the basis B_1 . What are its coordinates with respect to the standard basis B_0 .

(c) What is the change of basis matrix $\mathbf{C}_{B_0 \to B_1}$ that connects standard coordinate vectors (with respect to B_0) to coordinate vectors with respect to B_1 .

(d) If $\mathbf{v}_{B_0} = [2, 1, 2]$ what are its coordinates with respect to the basis B_1 .

2. Suppose $B_1 = \{[1,1], [1,-1]\}$ and $B_2 = \{[2,1], [1,0]\}$. Find the change of basis matrix $\mathbf{C}_{B_1 \to B_2}$ that maps coordinate vectors with respect the basis B_1 to coordinate vectors with respect to the basis B_2 .

3. Let $\mathbf{a} = [1, -1, 1]$ and $\mathbf{b} = [2, 1, 1]$.

- (a) Find the orthogonal projection of **a** onto **b**.
- (b) Find the component of **a** that is perpendicular to **b**.

4. Let $\mathbf{v}_1 = [1, 1, 1]$, $\mathbf{v}_2 = [1, 1, 0]$, $\mathbf{v}_3 = [1, 0, 0]$. Given that these vectors are linearly independent, apply the Gram-Schmidt orthogonalization process to obtain a corresponding orthogonal basis for \mathbb{R}^3 .

5. Let $\mathbf{v}_1 = [1, 1, 0]$ and $\mathbf{v}_2 = [3, 4, 2]$.

(a) Apply the Gram-Schmidt process to $\{\mathbf{v}_1, \mathbf{v}_2\}$ to an orthogonal basis for the subspace $span(\mathbf{v}_1, \mathbf{v}_2)$ of \mathbb{R}^3 .

(b) Extend the orthogonal basis found in part (a) to an orthonormal basis for \mathbb{R}^3 .

(c) Find the orthogonal projection of [1, 2, 1] onto $W = span(\mathbf{v}_1, \mathbf{v}_2)$

6. Let $\mathbf{x}_1 = [1, -1, 1, 1], \mathbf{x}_2 = [1, -1, 1, -1].$

(a) Apply the Gram-Schmidt process to $\{\mathbf{v}_1, \mathbf{v}_2\}$ to an orthogonal basis for the subspace $span(\mathbf{v}_1, \mathbf{v}_2)$ of \mathbb{R}^4 .

(b) Extend the orthogonal basis found in part (a) to an orthonormal basis for \mathbb{R}^4 .

(c) Find the orthogonal projection of [2, 1, 1, 1] onto $span(\mathbf{v}_1, \mathbf{v}_2)$

7. (a) Find an orthogonal basis for \mathbb{R}^3 that contains the vector $\mathbf{v} = [3, 1, 5]$.

(b) Find a basis for the orthogonal complement of \mathbf{v} in \mathbb{R}^3 .