Math 3013 Problem Set 1

1. Let $\mathbf{u} = [1, 2, 1, 0]$, $\mathbf{v} = [-2, 0, 1, 6]$ and $\mathbf{w} = [3, -5, 1, -2]$. Compute $\mathbf{u} - 2\mathbf{v} + 4\mathbf{w}$.

2. Find the vector which, when translated, represents geometrically an arrow reaching from the point (-1,3) to the point (4,2) in \mathbb{R}^2 .

3. Let $\mathbf{u} = [-1, 3, 4]$ and $\mathbf{v} = [2, 1, -1]$. Compute $\|-\mathbf{u}\|$ and $\|\mathbf{v} + \mathbf{u}\|$.

4. Compute the angle between [1, -1, 2, 3, 0, 4] and [7, 0, 1, 3, 2, 4] in \mathbb{R}^6 .

5. Prove that (2,0,4), (4,1,-1) and (6,7,7) are the vertices of a right triangle in \mathbb{R}^3 .

6. Specify the line that passes through both the points (1, 0, 2) and (2, 1, 0) as a set of vectors. (I.e., find vectors \mathbf{p}_0 and v such that the line corresponds to the set $\ell = {\mathbf{p}_0 + t\mathbf{v} \mid t \in \mathbb{R}}$.)

$$\mathbf{A} = \begin{bmatrix} -2 & 1 & 3 \\ 4 & 0 & -1 \end{bmatrix} \quad , \quad \mathbf{B} = \begin{bmatrix} 4 & 1 & -2 \\ 5 & -1 & 3 \end{bmatrix} \quad , \quad \mathbf{C} = \begin{bmatrix} 2 & -1 \\ 0 & 6 \\ -3 & 2 \end{bmatrix} \quad , \quad \mathbf{D} = \begin{bmatrix} -4 & 2 \\ 3 & 5 \\ -1 & -3 \end{bmatrix}$$

- (a) 3**A**
- $(b)\mathbf{A} + \mathbf{B}$
- (c) \mathbf{AB}
- (d) \mathbf{A}^2
- (e) (2A B)D
- (f) ADB
- 8. Consider the row and column vectors

$$\mathbf{x} = \begin{bmatrix} -2, 3, -1 \end{bmatrix} \quad , \quad \mathbf{y} = \begin{bmatrix} 4 \\ -1 \\ 3 \end{bmatrix}$$

Compute the matrix products **xy** and **yx**.